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FOREWORD

This report presents the technical findings of con-

tract NAS8-20140, "An Analytical Study of Periodic

Vortex Shedding from a Circular Cylinder. " The study

was conducted by the Space and Information Systems

Division of North American Aviation, Inc., for the

Marshall Space Flight Center, National Aeronautics

and Space Administration, Huntsville, Alabama.

Dr. F.C. Hung, Director of the Dynamic Sciences

Department, was Project Manager. B.H. Ujihara was

the Principal Investigator, responsible for the success

of the total effort. Mr. Ujihara was assisted by the

following staff: T. Sugimura, who was responsible for

the theoretical development; 3. E. Davis, who developed

the computer programs, assisted by D. Almanza;

G.M. Steuart, G.A. Curney, and H. P. Valentijn, who

operated the computer programs and analyzed computed

results; and M.K. Chapman, who edited the final report.

Dr. A. Roshko participated in the study as a part-time

consultant. At MSFC, the Project Monitor was

Mr. Heinrich Struck; alternate Project Monitor was
Dr. Max F. Platzer.

In addition to this report, a short movie was prepared

to demonstrate the dynamic nature of the results obtained

from this study.
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SUMMARY

Results of this study have purportedly shown that two-dimensional

incompressible separated flow past circular cylinders, and bluff bodies in

general, can be determined analytically on the basis of potential theory. The

key to successful application of this approach lies in implicit determination

of vorticity transport rate and feeding point locations in the solution.

For the case of an impulsively started cylinder, the drag buildup is

characteristically similar to that of Schwabe (1943), peaking at the same

maximum value, but at a slightly later time. While the pressure distribu-

tions, particularly over the wake-exposed portion of the cylinder, do not

agree with Schwabe's data, the reason is evidently due to the fact that

vorticity cancellation effects in the wake were not considered. No great

difficulty is anticipated in devising a technique for incorporating this effect

in the mathematical model, although the elementary approach attempted in

this study to account for vorticity cancellation was not satisfactory for

symmetrical flow analysis.

The flow past a flat plate normal to the flow was analyzed only for

symmetrical flow, using fixed v0rticity transport rate and feeding point

location. Basic similarity of the flow development to the analogous solu-

tion for the circular cylinder led to the conclusion that symmetrical flow

past a flat plate is also governed by flow stability criteria similar to the

cylinder, and requires implicit solution of vorticity transport rates and

feeding point location.

For the case of unsymmetrical flow, periodic vortex shedding was

demonstrated at a Strouhal number of 0.2, in agreement with experimental

data for subcritical Reynolds numbers. Lift and drag coefficients were

satisfactorily brought into agreement with experimental data by introducing

the vorticity reduction parameter, c , as a factor applied to the vorticity

transported from the primary feeding points. The improved method of

accounting for vorticity reduction mentioned above for symmetrical flow

could also be incorporated in solution of the unsymmetrical problem.

-1 -

SID 65-I 730



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

INTRODUCTION

Periodic vortex shedding, in the flow of fluids past bluff bodies, refers

to the orderly development of counter vortices in the wake. Its intriguing

and sometimes destructive manifestations in nature have attracted many

eminent researchers. The "yon K_rm_n vortex street" is undoubtedly the

most universally recognized phraseology describing this phenomenon. It

relates to yon K_rm_n's analytical solution a half century ago in which he

showed that a stable arrangement of a row of counter vortices occurs for

a width-to-spacing ratio of 0. 281. But because the inception of separated

flow occurs within the viscosity-important regions of the boundary layer,

complete analytical solutions to the vortex shedding problem have remained
unattainable.

In recent years, the vortex shedding problem has become important to

the structural design of launch vehicles. These vehicles are of long, slender

construction, required to stand vertically on the ground for extended periods

during launch preparation. The vehicles in this attitude, when subjected to

groundwinds, invariably exhibit vortex shedding flow. Critical structural

loads induced by ground winds act on these vehicles under certain conditions

of resonance between vehicle bending and vortex shedding frequencies.

Instances of limit cycle instability involving interaction between vehicle

motion and shedding forces have also been noted (Referencel).

In June, 1965, S&ID began a six-month study to develop an analytical

technique for determining the self-excited motion of an aeroelastic two-

dimensional structure, as a necessary first step toward the ultimate objec-

tive of solving the three-dimensional problem of ground wind effects on

aerospace vehicles. The approach to development of such a method was

based on application of the potential flow theory to the study of separated

wake flow. The exploratory nature of the study, coupled with its brevity,

made it necessary to demonstrate the feasibility of this approach as quickly

as possible. Correlation studies of pressure and velocity profiles on the

cylinder and _n the wake were therefore made using interim solutions having

known discrepancies. The approximate agreement of these solutions with

existing experimental data established confidence in the method, and successive

refinements were made. Later in the study, significantly improved solutions

were obtained, but time did not permit intensive analysis of these solutions.

This report presents a discussion of the basic problem of two-

dimensional flow about circular cylinders and traces the development of the

-3-
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theoretical method. A detailed account is given of the fundamental investi-

gations, including development of shear layer in flow past a halfplane,

symmetrical flow past a 10:1 ellipse normal to the stream, and symmetrical

and unsymmetrical flow past a circular cylinder. Conclusions were reached

based on correlating results of the theoretical solutions with experimental

data, and specific recommendations are made for further study.

-4-
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CONCLUSIONS

Incompressible separated flow past a two-dimensional, circular

cylinder has been investigated on the basis of potential flow theory. It has

been shown that the primary non-steady force characteristics can be ade-

quately predicted in agreement with experimental data for subcritical

Reynolds numbers, both for symmetrical flow and periodic vortex shedding.

It is believed that a numerically accurate solution with the approach

utilized herein should correspond to the infinite l_eynolds number case.

However, the roughness of numerical integration techniques used to solve

the problem have introduced a certain "insensitivity" to inherent instabilities.

This insensitivity has produced an effect very similar to that of viscosity in

real flow. The phenomenon is believed to be the same as that discussed by

Takami (Reference 13). In this context, the flow solution for higher Reynolds

numbers simply requires progressive improvement in the method of

numerical integration. A quantitative definition of the practical maximum

Reynolds number attainable by current computer capability remains to be

established.

Computed pressure distributions on the cylinder contain local discon-

tinuities as a result of limitations in the assumed mathematical model.

Practical improvements can be made and conceptual details for implementing

these improvements are presented.

The conclusion is made that the separated near wake flow past a

circular cylinder is indeed essentially nonviscous. In the same sense that

the Kutta condition makes possible the hydrodynamic analysis of airfoils by

potential flow techniques, additional "conditions" are indicated to permit

the analysis of separated wake flows with potential theory. Such analyses

are made possible today by utilizing digital computers such as the I]_M 7094

with its simultaneous tape, digital print and graphical output.

Compared with the relatively complete formulation of fluid flow by the

Navier-Stokes equations, the potential flow theory appears simple and

elementary. Yet it is this very simplicity that makes it a practical engineer-

ing tool. The versatility which such an approach provides cannot help but be

important in leading to better understanding of separated flow mechanics.

It is hoped that these study results will stir further interest in better

defining the role of Reynolds number in separated near wake flows.

-5-
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RECOMMENDED AREAS OF FURTHER STUDY

REDUCTION OF PRESSURE DISCONTINUITIES

The total pressure distributions obtained in this study contain pressure

discontinuities at the points of vortex sheet attachment to the cylinder.

Consideration of means to alleviate this undesirable feature leads to a

review of the somewhat arbitrary selection of the minimum pressure point

as the vortex feeding point. To be more precise about this matter, it is

noted that the transport of vorticity past any given point on the cylinder is
Z

VT/Z , where V T is the local tangential velocity. Then the rate at which

this transport is increasing or decreasing is _ T/_.. The total vorticity

in the boundary layer at this point is

/_ flow detachment point

T de

stagnation point

If it can be assumed that vorticity in the boundary layer, once created, is

not destroyed, then the feeding shear layer will grow from a surface area

rather than a single point. This area is determined by those points at which

is positive, with the strength distribution proportionate to its magni-
ae

rude. Resorting again to the use of vortex sheets, several sheets could now

be used with strengths proportional to the vorticity growth rate each sheet

represents. In this manner, the single large pressure discontinuity could

be reduced to several smaller ones in an improved idealization of the actual

problem.

PRACTICAL TWO-DIMENSIONAL PROBLEMS

Aeroelastic Response of a Two-Dimensional Cylinder

General agreement of study results with experimental data has

basically validated the analytical approach followed in this study. With

the state of development achieved herein, it is believed that practical

-7-
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two-dimensional problems may be treated. Of these, the aeroelastic

response of a two-dimensional cylinder in separated flow is first considered.

Evidence of self-excited motion of launch vehicles has been obtained in wind

tunnel tests by Buell, Reference 21 and Reed, Reference 1. Thus a better

understanding of the nature of this phenomenon is of importance to launch

vehicle structural design.

Study of this problem would be subject to subcritical Reynolds number

limitation as described in this report, and a rigid circular cylinder on

elastic support with structural or viscous damping would be assumed.

Within this framework, the nature of self-excited motion could be explored,

and stability boundaries determined.

Lift on Bodies of Revolution

The subject of lift on bodies of revolution using the NACA analogywith

flow about a two-dimensional cylinder may be investigated under the same

subcritical Reynolds number limitation. Cylinder-cone frustum combina-

tions as well as smooth ogival shapes could be investigated. Depending

upon further limitations that may be encountered in such a study, the

restriction to bodies of revolution may be extended to include those of

elliptical cross section.

FURTHER DEVELOPMENT OF BASIC TECHNIQUE

Most important, in discussing areas of further study, it should be

emphasized that the study approach developed herein demonstrates applica-

bility of a basic technique for analysis of two-dimensional, incompressible,

separated flow past bluff bodies. The technique is by no means completely

developed. Investigations into the simulation of supercritical and trans-

critical Reynolds number flow conditions should be made to more fully

determine the applicability of this" technique. The technique of accounting

for vorticity cancellation requires improvement. Relieving the pressure

discontinuity by multiplex vortex feeding sheets may improve the flow

solution. The flat plate problem should be investigated more thoroughly,

since it is the one physical flow that does appear to be independent of

Reynolds numbe r.

It is stated, optimistically perhaps, that once the limitations of this

approach are well understood, the application to separated, incompressible,

two-dimensional flow problems in principle, would be straightforward.

-8-
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VORTEX SHEDDING PROBLEM

Until recently, available experimental data on flow about the two-

dimensional circular cylinders was limited to maximum Reynolds numbers on

the order of one or two million (Reference 2). These data consistently show

that periodic vortex shedding occurs at Reynolds numbers in the approximate

range between i00 and I00,000. At higher Reynolds numbers the periodicity

degenerates into a random shedding. Significantly, the mean drag coefficient

also undergoes a large drop together with loss in periodicity as Reynolds

number is increased through this critical range. Although a classical expla-

nation was developed for the large decrease in drag coefficient, a concomitant

explanation for the loss in periodicity of vortex shedding could not be devel-

oped. In the face of these data it appears to have been generally concluded

that the loss in periodicity was permanent beyond the critical Reynolds num-

ber (Reference 3). The reason for this loss was best explained simply as a

Reynolds number effect. It remained an enigma until Roshko, in 1960

(Reference 2), performed tests on a circular cylinder at Reynolds numbers

up to ten million. In these tests, periodic vortex shedding appeared once

more at Reynolds number of 3.5 million and persisted to all higher test

values. Roshko identified this range above 3.5 x 106 to infinity as the

transcritical range.

This experimental finding was of far-reaching significance, for with it

Roshko was able to postulate a far more complete explanation of periodic

vortex shedding than had heretofore been possible. It meant that periodic

vortex shedding is characteristic of cylinder cross-flow at all Reynolds

numbers above I00 except for a relatively narrow region between approxi-

mately I00,000 and 3.5 million. The supercritical Reynolds number range

of random vortex shedding is confined to this relatively narrow region. A

tentative explanation for the basic cause of randomness of vortex shedding in

this supercritical region is given in Reference Z. The randomness results

from the fact that the point of shear layer transition from laminar to

turbulent flow moves forward from the wake region toward the separation

point as supercritical Reynolds number is approached. In the supercritical

range, a laminar separation may be followed by reattachrnent if boundary

layer transition to turbulence can occur closely enough. The result is a

separation bubble whose position is highly sensitive to small perturbations in

local pressure. The findings of Spitzer (Reference 4) and Tani (Reference 5)

substantiate this point of view. Perhaps the most profound conclusion to be

drawn from these observations is that the periodic nat%_re of vortex shedding

is basically not dependent upon Reynolds number, except for secondary

-9-
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characteristics. For example, the subcritical Strouhal number for a

circular cylinder is about 0.2 whereas at transcritical Reynolds number its

value is 0.27 (Reference 2).

Further indication that periodic vortex shedding may not be Reynolds-

number dependent is obtained from Reference 6. In this work, Abernathy

and Kronauer show that two parallel vortex sheets a distance h apart roll

up into a vortex street following an initial disturbance. Their analysis

utilized numerical solutions of potential flow equations for discrete vortex

approximations of the vortex sheets.

Finally, these basic considerations combine to reinforce Prandtl's

original observation (Reference 7) that "...the flow about a solid body can be

divided into two regions: a very thin layer in the neighborhood of the body

(boundary layer) where friction plays an essential part, and the remaining

region outside this layer, where friction may be neglected."

Interpreted with a certain degree of optimism, an exciting possibility

has thus been afforded the application of potential flow theory to the analysis

of separated wake flow. The key to its successful application must be in the

proper simulation of vorticity transport from the boundary layer. The study

of separated wake flows based directly upon the Navier-Stokes equation is

certainly the most exact approach. However the use of potential theory has

certain distinctive features making its application attractive.

First, the numerical techniques used to effect solutions of the Navier-

Stokes equations are limited by computer capacity and computational speed to

investigation of fairly low Reynolds number flows.

Second, if successful, the use of potential theory in solving periodic

vortex shedding should establish the nature of its independence from Reynolds

number.

Third, the potential theory, being basically simple in application,

prove correspondingly versatile in providing insight to the mechanics of

vortex formation and shedding.

should

-I0-
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THEORETICAL DEVELOPMENT

The velocity field about a source-sink circular cylinder in a field of

free vortices, some of which are growing, is developed with potential theory.

Non-steady pressures in the field and forces on the cylinder are then derived.

These are extended to the case of an elliptical cylinder by the use of con-
formal transformations.

CIRC ULAR C YLINDER

Flow Field for a System of Vortices Outside a Circular Cylinder in Uniform
Flow

For incompressible, inviscid, irrotational, two-dimensional flow,

the flow field may be described by a potential function of the complex variable

(z = x + iy). The complex potential, w(z), of a system of vortices outside

a circular cylinder of radius "a" in a uniform stream may be written as the

sum of two potentials

where w(z) = Wl(Z) + Wz(Z)

Wl(Z ) ~uniform flow past a circular cylinder (r = a) at angle of attack

wZ(z') ~system of vortices outside a circular cylinder (r = w)

The velocity components are found from the relation

(u-iv) - dw(z)
dz

(1)

From Reference (8), Wl(Z ) and wZ(z ) are found to be

-is a is
Wl(Z ) = - Uo ze +--ze (z)

-11-
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and for n vortices

j =I (z-zj) j=l

n

-i j_l'= Kj log z +i Zj=I Kj ]og--zj (3)

K i ~ strength of the jth vortex filament--positive rotation takenwhere

clockwise.

For a vortex outside the cylinder at z = zj the position of the image
a Z

vortex inside the cylinder--, will be denoted;
zj

i
Z,

J

a2 a2 (xj + lyj)

z. 2. Z

j x.j +yj

(3a)

therefore

Z Z

i ax. a yj i j
x. - yj =j 2 2 2 2

x.j +yj x.j +yj

The velocity of the mth vortex filament outside the circular cylinder

is given by

(u-iv)m d L: - _z Wz(Z) " iKm log (Z-Zm)] + dWl(Z)dz t

n K. n K. n K.

Ez
j=l m j j=l z -z. j=l m

m j
j#m

+ U cos o_
o -?- -i oSin +Z

m Zm

(4)

-12-
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The third summation term above, while correctly obtained by the circle

theorem, is henceforth excluded by virtue of the condition that total circula-

tion in the fluid region remains zero. Separating Eq. (4) into real and

imaginary parts gives the velocity components in non-dimensional form

\'oV Xm +,,m
jam J

and

Kj Ym (xj +y j) -yj

+ Ym ) +j=l 1-Z(x.xj m +YjYm } + (x2m Z (xjg YJZ)

[ 22]x - Ym ZXmYm sin u (5)

/v\ __+ [_ :,,:T-_.._
j_m

+ m j
Z Z Z Z

j=l l-Z (xjxm + yjYm) + (xm +ym) (xj + yj}

ZXmY m ]

- ,cxr:_ ;, [ z 2]x - Ymm

cosa+ 1 + Z g -Z sin_ (6)

(Xm + Ym

where the lengths have been nondimensionalized by the radius (r=a).

-13-
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Pres sure Coefficient

The pressure equation for incompressible, inviscid, irrotational flow

under conservative forces is

P 1 Z

T" +T q + £ acat- c(t)

If there are no body forces (_ = 0) and the flow is steady at x = _,

Equation (7) becomes

P I Z 8¢ -C
-F+-_ q at o

(7)

(8)

whe re

C
O  12]= +--fq

X"oo

The pressure coefficient is

p-p
C -

P pq2/2
- 1 -

/q_"l" '] 2 8¢+ Z 8t

q_

(9)

For the situation described for a system of vortices outside a circular

cylinder in uniform flow, the velocity potential, ¢, may be found from the

complex potential w(z).

w(z) = Wl(Z) + wz(z) = ,(z) + i_(z)
(9a)

whe re

¢(z) = ¢l(Z) + Cz(z) = velocity potential

_b(z) = _bl(Z ) + q)z(z) = stream function

Since

Z is]
-io_ a e

wl(z)__ =- U ze +--o z

(1o)

-14-
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therefore, on the cylinder (z = ae ie) ,

when ot = 0

w = -2U
1 o cos (8 -_) = _1 (11)

¢1 (x,y) = -2U ° cos 8 = -2UoX

The complex potential due to the vortex system may be written

w2(z) =-i_-_Kj og Iz- zjl+i

j=l

r 1
+i_Kj oglz zjl + iO -

5= I z

+ i_-_,Kj oglzjl + iO

j=l

(12)

whe re

log lz - zjl = log [(x - xj)2

1/2
"1

+ (y _ yj)z|
J

0¢z_zjI t_nl(L2_)
X- X. J

thus
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o2(z )-- Z Kj an-1 -YJ tan-1 - " tan-1 Yj

j 1 x j/

(13)

The velocity potential, 0, on the cylinder

e(x,y) = el(X,y) + e2(x,y)

(r = a) becomes

= -2U cos (0- e)
0

(:4 (>- YJ - tan-1 - - tan-1 Yj

J:_ V- Xjl
(14)

Differentiating with respect to time at a particular point on the cylinder

(x, y are fixed) with Kj a function of time gives,

00
8t

x, y

u2_-,/__'_ (Y-yi)uj-(x-x_)v_+
oL._\u a/ z )2

j=l\ o / (x - xj) + (y - yj

i (y _ Y_ _ J J(_-xl)v.- _/°._._--_u_
2 i 2 2+

- j(x.xl).(__) x._

0 i

_'_ 1 - Yj - "+ U 2 - tan- - tan-
o L__ _-_ an" 1 1 -Yj

j=l. xj/

where the velocities have been put in nondimensional form by division by

(Uo) and the lengths have been nondimensionalized by dividing by (r=a) ,

and

(15)
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i
V. _

J dt z\Z - yj _ -
+ yj

Zx.jyjujl

The pressure coefficient Cp (x, y) at a particular point (xk , Yk)

inder becomes, (q= = Uo)

(16)

on the cyl-

r ' z z\]

Cp(Xk'Yk)=[l- [Uk+Vk) ]

r, , =.=.,,..-,..,.,.,1+ , .... _,, .. x v k i .l_'s/KJ'_itYk'3'-j'uj-'"k _J"J+ _ " -+ LJJ_JL41

( Z i)2 i)2 Z 2Zl--ltUoa/[(Xk-xj)Z+ yk-y j) xj+yj ]j=i . / (xk-x j (yk-y j

+2 E 8t

j=l

Yj 1 Yk - " -1

,an "1 Yu--k; _ tan- tan

xj/

(17)

Forces

The forces may be computed by integration of Equation (17) about the

circular cylinder, but it is found that the following analysis greatly simpli-

fies the problem.
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For the case of a fixed cylinder in steady, irrotational flow the force

components (D, L) , neglecting external forces, are given by the Blasius

theorem.

where

Z

D - iL =_ ip
dz

D = force component in positive x-direction

(18)

L = force component in positive y-direction

w(z) = complex potential

p = density

When the motion is not steady the term p 8_/8t ,

is contained in the pressure equation,

the addition of the term

where $ = velocity potential,

and Equation (18) must be modified by

which then gives

D - iL =Tip dz - ip w dz

Equation (20) may be evaluated in two parts

D=DI+D 2

(19)

(Z0)

L=LI+L Z

where
Z

D I - iL 1 = _ dz
(21)

-18-
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and

Dz +iLz = ip _ _ w dz (zz)

Equation (21) may be found from anextension of Lagally's theorem to a sys-

tem of vortex filaments outside a circular cylinder, thus

n

D 1 -Zyrp (U sins - v.)
o j

j=l

(Z3)

n

L 1 = Z_rp _"_Kj (U °

j=l

cos a - uj)
(Z4)

The second integral (Equation ZZ) may be evaluated by first differentiating

under the integral. The complex potential w(z) is

n

ze -- ei - i og (z - zi)_ U
r.

"''-' O Z I

j=l

_ (Z5)

In general, U and K. may be functions of time, e.g.,
o j

U = U (t)
0 0

for a cylinder started impulsively or for a cylinder in
accelerated motion.

Differentiating Equation (25) with respect to time for z-fixed gives,

- 19-
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°÷[z--= _
-ie+ a ie o

ze m e
z at

n OKj [
+i E _{ Io

j I

g(z- zj)-log(z- zj)

-I _ [ i Oz.Kj __. _A+z -z. at
j=i J

i_]1 Oz. 1 Oz. (Z6)J J

i 8t -- at
Z - Z. Z.

J J

wher e

aZ.

---_ =u. +iv.
Ot j j

i
8z.

i . i
J - u. +iv.

at j j

and

u. , v. ~ velocity components of jth vortex
J J

i i
u. , v. ~ velocity components of the image of the jth vortex
J J

The integral becomes

ip -_- dz = iP - ze
2a i

+_ e

z /at
dE

(Continued on next page)
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n K

j=l

i

log (z - zj) - log (z - zj)

log (z) - log (zj)

+

dz

+ip/ -i Kj

j--1

Oz. Oz. Ozj- 1 J+ 1 j 1
z - z. Ot i Ot -- Ot

j z-z. _.
J J

= I 1 + 12 + 13

Utilizing the "residue "_,,=_e,,.".._-_....co_rnplex analysis,

about the unit circle (z = eio) becomes

(Z7)

the integral

/[ 1ia a i_ o

I 1 = iO - ze +--z e --0t dz

k

OU
Z o iot

I 1 --= 2_P a 0t e

(28a)

and

j=l

1 dz. 1 dz i. 1 dz.
- 3 J dzJ + --------r

z- z. dt x dt -- dt
j z-z. z.

J J

13 = i 2_P "E K.j dt

j=l

)
w

j=l

(ZSb)

-Zl -
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The second integral, I2, must be treated in a different manner. One

part of the integral vanishes:

W

aKJl log(z- log- 1-i Z at " zj) - zj)

j=l

dz=0 (28c)

since the integrand is analytic at every point within and on the unit circle.

The remaining contribution cannot be evaluated by residues since the

log function does not have an isolated singularity; thus, we have to integrate

directly. Outside the unit circle the function, log

following expansion

2 3

io_ - =--+ +
z 2\z / 3" _z -

[(z_z )/zl, hasthe

+ . . (28d)

Integrating this series term by term about a circle

i

f (z+)- log - dz = 2 _ izi.
J

(r : R > i) results in

IzI = R

Since the function is analytic in the annulus (1 ! I z l! R)

i
dz = 2wiz.

J

Izl=a

the refo re

12
--iP

w

at

j=l
log (z m Zj) -- logi

Z - Z.

-log J
z

- 22 -
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Iz = P _ _ -log z

j=l

dz

Iz = 2vp iz_ -_ = 2vp x - yj

j=l j=l

(Z8e)

Therefore

D 2 +iL 2 = I1 + Iz +13

[

°[
Z

Z_p a

]n n

OU . |o ,c_ i aKi

- =at e - 2vp yj -_- Z_p Kj

"-- j--1

+i
2Trp x _+ 2_p_/ uat j

j=l "=

(Z9)

or

D 2

o i

: 2_p a 0t cos_ - j

j=l

L 2 -- sinot + + Kj u

j=l

(30)
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The total forces are

D = D 1 + D 2

: 2"np
_ i

K. U sins +v. -v. -
j o J 3 n ]E i OK. 2 UoJ +a cos_

Yj o--E- -7-
j=l

(31}

and

L=L 1 + L 2

: 2_P ( o )t oE oi + x i + sin
Kj U cos _ - u +o j

j:l j:l

(32)

The above evaluation of Iz , while considered to be mathematically

correct, is subject to further scrutiny. The principal objection is that

evaluation of 12 in this manner violates physical aspects of the problem.

This is made clearer by the following discussion of physical implications

involved. The crucial point to be made is that a vortex cannot simply grow

without some means to provide for its growth.

In the ideal fluid framework of this study, this growth rate is provided

by a vortex sheet connecting the growing vortex to some boundary point. The

product of the average of the velocities on either side of this sheet and the

strength distribution represents the rate at which the vorticity is being fed to

the growing vortex.

Thus

where U 1

i iZ_ 8K U1 + U U1 - UZ 1 _Z
--_-- : _ i- uz : 5. :_

and U 2 are velocities on either side of the vortex sheet.

Now, if the integral expression of Equation (Z8c) around the unit circle

is to be zero, the feeding sheet attached to the growing vortex at zj cannot

be connected to the circle, since this would cause a branch point and a non-

zero integral value. Only one other possibility exists; the vortex sheet must

- Z4 -
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extend to infinity. Vortices in the interior of the circle are governed by the

circle theorem, so the image vortex must be connected by a vortex sheet to

the center.

If the strength distribution of the external vortex sheet is assumed to

be finite at all points, the "image" sheet reaches an infinite strength distri-

bution at the center.

But the integral expression of Equation {28C) is not defined along the

branch cut. Mathematical development has not been carried out for incorpor-

ating distributed singularities along the branch cut corresponding to this

vortex sheet. Even without this development it is clear that _his system

does not represent the physical situation of a growing vortex being fed from

vorticity generated within the boundary layer. This result, with its short-

comings, are presented herein primarily because it has apparently been

used elsewhere in the literature in determining forces on a cylinder in a

field of moving and growing vortices (Reference 9).

A more plausible representation of the physical situation is one wherein

the external vortex is attached to the cylinder surface. By the circle theorem,

the image vortex is also attached to the cylinder surface by a vortex sheet of

opposite sign.

Rather than employ the B!asius theorem to determine cylinder forces

for this system, recourse is had to an approach similar to that employed by

Bryson (Reference 10) and explained conceptually in Reference II. Accord-

ingly, the impulse of a pair of vortices of equal and opposing strength

located a distance, Az , apart, is

Ij = iZ_rPKj azj (32. 1)

Since each discrete vortex has its "image" within the circle, the

impulse from all the vortices in the field may be described by superposition

of such elementary impulses. If the external vortices are all free, the

force acting on the cylinder then becomes the time derivative of this impulse.

dI

D + iL dt (32.2)

where
n

I = i2=p_-_j=l Kj (zj - zj)i
(32.3)
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hence

D - iL = iZ_P n n ]. .i - zjj - zj + _ j
(3z.4)

It is seen that the first summation term in Equation (32.4) agrees with

the corresponding term in Equations (31) and (37.) derived by the Blasius

theorem. But the second term, containing the vorticity growth rate, involves

the complex distance between each external vortex and its respective image.

Certain fundamental investigations were made in this study to learnthe signif-

icance of components in the second term. These are discussed in a

subsequent section of this report.

E L LIP TIC A L C Y LINDE R

Flow Field for a System of Vortices Outside anElliptical Cylinder in Uniform

Flow

The previous analysis for the circular cylinder may be extended to the

case of an elliptical cylinder by a conformal transformation. The circular

cylinder is mapped into an elliptical cylinder by the well-known Joukowski

transformation.

In the plane of the circular cylinder, say the z 1- plane, the circle of

radius ro = (a+b)/Z is mapped by the transformation

2

z z _ C where C 2 2 b 2= -_ -- a -

1 4z 1

(33)

into an ellipse in the z-plane with major axis, 2a,

z 1 PLANE

and minor axis, Zb.

z PLANE

- 26 -
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When b--O we have the degenerate case of a flat plate of length Za in the

z-plane.

The velocity field in the z-plane is completely determined from the

zl-plane and the mapping transformation. For a general system of vortices

in the z-plane (plane of ellipse), the velocity of the ruth vortex is

(u - iV)m = dF(Z)dz (34)

whe re

F(z) = -w(z I) + iK log (z - z ) (35)m In

and from Equations (Z) and (3);

r!

W(Zl) : -i_-_Kjj:l [log (z 1 _ ,.lj).log(,.l_lj)+
log z 1

-u [ -is I is]
o _zle *--e jzI

(36)

where the circle in the z 1 -plane is chosen to have unit radius.

Therefore

dF(z)
The derivative, dz

Ca-b_A z:,--,z+
kz]

I \ Z ]z I

may be written

dF(z) = dF(z) dZl

dz dz 1 dz

where the mapping function is

z =f(z )
1

(37)
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and

dE

dz I

From Equations (35) and (36)

dr(z
1

dE

1

)

= f'(zl) (38)

_zz: - i Kj z z 1.
j=l 1 J

m

z
lj

z z
1 lj

- i U sine
O

z I / f(Zl)-

f'(zI)

f (Zlm)

+U
O

(39)

Thus,

dF(z)

dE
-- i

Z=Z Z 1m "=

+ U cos_
O

1 zij +__i )
- z 1. Zl_ 1. - 1 Zl3 J

iK m f'(zI) ]

Zl=Zlm l-Zlm

(40)

The first and last terms in the brackets have singularities when z I = Zlm,

but the other terms are regular if IZll > i. Rewriting Equation (40)

- 28 -
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dz Iz=z = F'(Zm)
m

n n
K. K.

Zlm(ZlmZlj - 1)z lrn'Zij
j=l j--f

1
÷ U cosot (1 ---=) - i U

O _ O
z

1

+iK
m 1 f'(zl) )IZl-Zlm f(zI) - f(Zlm

1

sin 0t(i ----_-)
z
1

Zl=Zlm I

(41)

Expanding f(z I) in a Taylor's series about the point Zl=Zlm results in

i :"- _ )i f"_z im)

i J"_ll I i "

Zl-Zlm f(zl)-]-_(Zlrn = -_ f,(Zlm )

Zl=Zlm

(4Z)

F ina lly

(u-iV)m = F'(Zm)

= _.-_---_. i --. i

Zlm'Zij

Kj

z im(Z im_ij- 1)

(43)

Continued on next page
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+ U cos oz
o

iK f"( ))I

m Zlm

Z f'(Zlrn

Forces

The steady forces were found earlier from Lagally's theorem.

n

D 1 : -Z_P_-_ Kj (U °

j=l

n

sine - v.)
J

L 1 = 2_p _ Kj (Uo cos_ - u.)j

j=l

(44)

The unsteady forces are found in the same way.

the unsteady components D 2 and L 2 are

8wD Z + iL 2 = ip -_- dz

From Equation (ZZ)

(45)

Unlike the steady forces, the unsteady effects must be evaluated in the

z-plane, since the operator, 8/8t, is not transformed in a one-to-one way

in any conformal transformation (Reference 12). The complex potential in

the zl-plane is

n

w(z 1) = -i _ Kj [log (z I - Zlj) - log (z I - Z'lj)

j=l

] [_ lio]. - +Zl e
+ log z I log _lj Uo zle io_ __
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where

(46)

The inverse of the Joukowski transformation is

zI =_- z ± (47)

where

C z = az _ b z

and

Z÷ V Z - C

J
maps points outside the circle

into points outside the ellipse

Zl= _- z- maps points inside the circle

into points inside the ellipse

making the substitutions into Equation 46

w(z) =

n

z ' jz'',]-i Kj log (z ± Jz z - C z ) --_-( z. + . - CJ J

j=i

n

, j2 ]+ i _ Kj log (z =h Jz g - C 2) -:(z.'-j j - C Z)

j=i (48)

Continued on next page
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n

J T (z * z 2 - c 2)

j=i

n

1 _ z 2 _ C 2)+i I Kjl°g(Y(zJ+ j

j=i

[__ _ -is 1

. z'2 . C2)eU (z+ +

o l(z+
2

ei°] (48)

Differentiating w(z) with respect to time with z fixed gives

n

"_[zdW = - i X K.

j=i

[dz dz ]3 __I / 2 c z" d-T-z.3 at j

3 [( _z cZ _z2 cZ)]_._ _.j)-( _. . + j -

'___!/ zjn -----_J + zj dt

"=" [(z- zj)- ( zz C z zz
' i " - j - Cz)

(49)

iterms which do not contribute singularities to}
+ the derivative, i. e., analytic inside the

ellipse
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T hus

/0wD 2 + i L 2 = ip _ dz

1-z. / - c
j j / dt

F, d.) 7. c , . c
J V J

The force contribution arising from growth rate of the feeding point

vortex, and feeding sheet are not derived for the elliptical cylinder.
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FUNDAMENTAL INVESTIGATIONS

SHEAR LAYER INSTABILITY

One of the most important practical problems in numerical computer

studies is the control of machine time consumption. In the analytical approach

chosen for our study, the machine time consumption increases exponentially

with the number of vortices in the flow field. It is therefore, desirable to

obtain the maximum information from the least number of vortices (least

machine time consumption) with acceptable accuracy.

Vorticity Transport Rate

The parameter which defines a particular flow condition is the vorticity

transport rate:

dk A
- (5l)

dt Z

In the actual flow, vorticity is transported into the flow field from the solid

boundaries in the form of shear layers. By approximating the shear layer

by discrete vortex filaments, Equation (51) may be rewritten,

k _ 2%

At 2_
(52)

where

k = strength of vortex filament - nondimensionalized by UoL.

1
_--_ = frequency at which vortices are introduced into the flow field -

nondimensionalized by @o"

L = characteristic length.

U o = free stream velocity.

It follows immediately from Equation (52) that for a fixed transport rate

(A = constant) any value of vortex strength (k) may be chosen. But for a given

transport rate the number of vortices necessary to approximate the total

circulation in the flow field after an elapsed time, t = t*, given by

(total circulation)i-" = 2rr (d_k) dt (53)
dt

35-
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is inversely proportional to the vortex strength, k. Stated otherwise, the

higher the frequency (1/At) the greater the number of incremental vortices

necessary to reach a particular elapsed time, t = t::-_= n A t.

In order to investigate this problem without expending a great deal of

computer time, an analysis for flow over an infinite half-plane with vortices

was programmed for the IBM 7094. The configuration is shown below.

Uo

\ \ \ \ \ \ \ \

Y/Yo

\ \ \ \ \ \ \ \ \\
x/Y o

The complex potential for a system of n vortices and uniform flow in

the upper half plane is given by

n n

w(z) : - i _ Kj log (z - zj) + i _ Kj log (z - Ej) - Uoz

j:l j:l

The induced velocity at the mth vortex is

(U - iv) m : U o

j:l j:l
j/m

For this study a vorticity transport rate was chosen and discrete vortex

filaments were introduced into the flow at a prescribed position; e.g.,

coordinates (0, l)in the results presented.

Assuming a shear layer at the boundary,

consistent with zero surface velocity,

velocity is

dk i (_)- or
dt 2

the vorticity transport rate

U = U(x), and U o the free stream

K/UoYo ~

U o At

Yo

0.1

-36 -
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Location of the feeding point was arbitrarily fixed at _--_ ) = I. 0. Under

these assumptions it was reasoned that this flow solution should be carried

out until the vortices moved downstream a distance x = ny o, where n > > I.

The implied analogy here is that the feeding point height represents some

boundary layer thickness.

Vortex Strength

At first glance, the only variable to be considered is the vortex strength,

K . That is, for the given vorticity transport rate and feeding point height,

UoYo

the representation of a continuous shear layer by discrete vortices becomes

progressively worse as the strength, hence the period of successive vortices,

increases.

What is the criterion for judging whether the vortex strength is or is

not too great? If the half-plane were removed (viz., the problem of shear

layer feeding point in an unbounded region of uniform flow), even the

parameter K would no longer be a variable, since Yo would be undefined.
UoYo

Stated in other words, the problem of a shear layer growing from a

single point in an unbounded region of uniform flow has only one analytical

solution. ""-=-i,-=-=_.v.._^'"+;_,,,n,,].......d consist of an inward spiral from the feeding

point.

U o

When the solution is obtained numerically, however, the discrete

vortices representing the shear layer are finite in number; consequently, the

spiral has limited definition in the center. The greater the number of

vortices, the greater the definition of the core, obviously. That this statement

should be true even when total vorticity is held constant, i.e.,

n

Kj = constant,
UoYo

i=l
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is not quite so obvious. It might thus be argued that one criterion for setting

the strength of a discrete vortex might be based upon the degree of exactness

desired in representing a Ka/rma/n vortex.

The preceding discussion has been based on the presumption that once

the change has been made from continuous shear layer to vortex filaments,

the solution may be obtained in a straightforward manner. Actually, the

instability of numerically computed vortex motions has been the subject of

study for many years (see Reference 13). Such instability was encountered in

the half-plane study. Invariably this instability results in a relatively rapid

randomization of vortices from their smooth, initially line nature into one

wherein the vortices assumed positions laterally displaced from the original

sheet in a random manner, often at distances of several times the original

spacing. Once having spread out, the solution appeared to proceed at a more

regular pace. It was reasoned that a sinusoidal motion of the feeding point in

time would spread the vortices, thus possibly precluding this type of breakup.

The relationship

Y - 1 + _ sin(N(360))
Yo

thus introduces two additional parameters: _ , the sinusoidal amplitude, and

N, the number of vortices per cycle.

FORMATION OF A GROWING SHEAR LAYER IN FLOW PAST A

HALF-PLANE

Table I summarizes eight cases investigated in studying the motion of a

growing shear layer in otherwise uniform flow past a half-plane. These

results were obtained in an effort to isolate basic characteristics encountered

in the numerical technique of approximating a continuous shear layer by

discrete vortices, and using finite difference methods to determine their

motion. Of primary interest were the effects of vortex strength and inte-

gration accuracy. Computer plots of the vortex patterns are presented in

Figures 1 through 5.

dk
In all cases, the vorticity feeding rate, -_- = 0. l, simulated the strength

distribution necessary to reduce velocity along the boundary to zero.

It is first pointed out that vortex strength is important only in relation

to some characteristic dimension of the problem; in this case, the dimension

is height of feeding point above the half-plane. This is made clearer by noting

that the nondimensional form of vortex strength is k/UoYo, where Yo is some

characteristic dimension.
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It ;_ found that the discrete vortex approximation of a continuous shear

layer produces very similar results for a wide range of vortex strengths.

For example, Figures l(C), Z(B), 3(B), and 4(C), show the state of shear

layer development at a nondimensional time of Uot/Y o -_ 7.0 but with vortex

strengths varying from 0.005 to 0. I. Shear layer length in the x-direction is

the same in all cases; however, the maximum height varies from Y/Yo = I. 1 to

1.2 with the type of numerical integration. The more accurate integration

produces greater maximum height. In general, the greater the number of

vortices, the more advanced the state of core development. As an extreme

case, a solution using K/Uoy o = 1.0, Uo_tF/Y O = i0, and UoZitl/y o = 0.001

was attempted (Case 8). Results were completely divergent with vortices

scattered in negative as well as positive directions. Shear layer develop-

ment was not evident. This type of divergence is simply caused by excessive

sparseness of the vortices. Each vortex behaves as if it were influenced

only by its image, and its velocity of approach toward the symmetrical

boundary is not eliminated.- Consequently, the image velocity contribution

becomes excessive.

It is concluded that the boundary between stable and unstable solution

lies in the region of vortex feeding periods 1.0 < Uo_t/y o < I0.0. Further-

more only relatively small differences in shear layer configuration results

from decreasing the vortex strength much below the marginal value. The

- 4Z -
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primary differences appear to be in the maximum height attained by the shear

layer, and in the state of development of the core at a given value of time

elapsed from initiation of the first vortex.

The analogy between the vortex feeding height above the plane of

symmetry and distance from the circular cylinder in the vortex shedding

problem should be valid only in determining the detail flow whose scale of

motion is small compared to cylinder radius. This is important in the

"starting" problem wherein vortices which are initially too strong will not

form smoothly into a wake cavity, but will instead interact strongly with their

image vortices while being moved by convection around the cylinder. The

result is an unstable solution very similar in nature to that obtained in Case 8

(Table I). Such results were obtained in previous company-funded studies of

this problem. The technique devised at that time to surmount this local

instability was to incorporate a time-variable feeding rate wherein the initial

vortices had low strength but succeeding vortices were introduced at increas-

ing strengths until the desired feeding rate was reached. This technique was

utilized to obtain the Model I computer program results shown in Figures 6

and 7.

It is informative to make the analogy between height of vortex feeding

point and radial distance from circular cylinder in the vortex shedding

problem. If this distance is set to 0. 1 radius, the corresponding boundary

between stable and unstable solutions would be 0. 1 < UoAt/a < i. 0.

Solutions for the circular cylinder shown in the last frame of Figure 6(A)

and the first frame of Figure 6(B) were obtained with UoAt/a = 0.07 i0 and

0. 174 respectively and represent the same state of development(Uot/a = 7.1).

Their close agreement is strong evidence of a numerically accurate solution.

Tentatively, UoAt/a may be increased still further before this l°cal type of

instability might begin to appear. If the above prediction is valid, such

instability should occur at UoAt/a < 1.0.

A further analogy may be implied between height of feeding point, Yo,

above the plane of symmetry in uniform flow, and the corresponding distance

to the feeding point outside a circular cylinder in symmetrical flow also

measured from the plane of symmetry. Such an analogy would permit an

inference regarding the maximum magnitude of UoAt/a that might be used to

adequately represent flow characteristics away from the immediate cylinder
/ £

area, but possibly within the region of Karman vortex formation. Thus,

based upon this one-to-one analogy, the nondimensional time, UoAt/a, might

be as high as 1.0 without significant loss in accuracy. If so, the real time

capability for the same computer machine time could be extended by a factor

of five over that presented in Figure 6(B). It is suspected that local instability

in regions close to the cylinder would manifest itself in some form at smaller

values of UoAt/a.
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The above inference, while probably over-optimistic, does contribute

to a better understanding of the problem of obtaining stable solutions and

indicates that the vortex distribution may be made significantly coarser than

that of Figure 6(B) without appreciable loss in accuracy.

Effects of Changing integration Mode

As previously mentioned, a persistent instability has been encountered

in the numerical solutions of a growing shear layer in flow past a half-plane.

Invariably this instability manifests itself after a spiral loop has formed in

the vortex sheet roll-up. At inception, one or more vortices near the upper

edge of the spiral suddenly commence orbiting about their adjacent vortices.

This disturbance to the erstwhile smooth consecutive train of vortices is

propagated in both directions. As a result, the vortices are displaced

laterally by distances which are on the same order of magnitude as their

original spacing. Once spread out, the vortices appear to regain some

measure of stability.

If this instability is caused by the grossness of numerical integration

techniques, it would appear that a refinement of the numerical integration

should retard its onset until later real time. That this is not so can be seen

by comparing Figures Z(A), 3(A), and 4(B). Figure 3(A) represents results

obtained with ten times smaller integration intervals than were used to obtain

Figure Z(A), while all other parameters remain unchanged. Yet the shear

layer configuration of Figure 3(A) shows signs of breakup while that of

Figure Z(A) is still smooth. Figure 4(B) represents results of an improved

integration scheme as described in Table I, yet here the breakup is in an

even more advanced state than in Figure 3(A)! On this basis it would seem

that this instability is not due to grossness of the integration method nor, by

the same token, to truncation errors of the digital computer. The randomness

of vortex motion encountered by Takami(Reference 13), appears to be of this

same nature.

In a further effort to control this instability, it was reasoned that

sinusoidal motion of the feeding point could cause initial dispersal sufficient

to preclude the unstable randomization. Figures 5(A), (B), and (C) show the

results of this investigation. With twenty-four vortices per cycle (Figures

5(A), (B), and (C)), the sinusoids initially crest, then roll up in small vortex

groupings. Without further investigation it is concluded that vortex cores

will form in concert with any given frequency of feeding point oscillation.

Considerably more thought should be directed toward this phenomenon

because of its possible effect on numerical results.
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This same type of instability is evidenced in flow about the circular

cylinder. Its onset may be noticed in Figure 6(A). In a more advanced

state, shown in the last frame of Figure 6(A), both vortex sheets depart

from the single train configuration at I. 5 radii downstream. The fir st

frame in Figure 6(D), which is at the same nondimensional time but rep-

resents a much coarser distribution of vortices (approximately Z-I/Z times

coarser), the instability is not evident. Yet the overall flow configurations

are essentially the same, and only small differences appear in computed

pressure distributions (not shown). It is tentatively concluded that this

type of instability is unimportant to the primary flow characteristics of

interest in this problem. As a precautionary note, however, mention is

made of the similar nature of this instability to transition o{ an initially

laminar shear layer to turbulence. It may be that comprehensive correla-

tion with supercritical Reynolds number effects by the approach taken in

this study will require further understanding of this instability phenomenon.

Cylinder Forces Due to Vortex Growth Rate

The relationship for cylinder forces, based upon the impulse of a

vortex pair, is given in Equation 32.4. It is repeated here for convenience.

(D- i L) = i 2 _Tp K - i) +j=l (zj _-_-- (zj - zj )
j=l

(3z.4)

The first summation is in agreement with the corresponding term

derived from the Blasius theorem. Furthermore it agrees exactly with

results obtained by numerically integrating cylinder pressures._, computed

from Equation (17), minus the pressure term containing _-_.
Therefore,

those terms in the pressure equation (17), the force equation (29), and the

force equation (32.4) which do not contain _may be considered substantially

correct.

The second term in Equation (32.4) requi{'es further consideration to

define its correlation with the pressure equation. (The terms involving

a----_Kin Equation (29) are considered inapplicable to the problem at hand, as
at
previously explained. )

In order to isolate as much as possible the particular effect symbolized

by the second term, an idealized situation was assumed. Flow conditions

are symmetrical about the x axis. Twin vortices are located on the y axis

at a distance, A R, from the cylinder surface. These vortices are stationary

in space, but growing in strength with a nondimensional growth rate of
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They are always of equal but opposing strength.

For values of AR equal to 0.1, 1.0, and 10.0, pressures on the cylinder

surface based on Equation (17) were determined by computer.

Numerical integration of these pressures result in incremental drag

coefficients of 0.981, 5.4, and 9.81, respectively. Drag coefficients obtained

in this manner appear proportional to the image vortex distance from the

cylinder 90-degree position, for this particular vortex configuration.

Thus

=z_!_ i
ACD UZoa !_(zc - Zk)=4_r

i
where z k is the position of *_,,_...._::-_r__vortex image,

i
cylinder along the radius vector through zk.

Z

i

(z c - Zk)

is that point on the

It is further noted that the pressure discontinuity at the 90-degree

position is a direct consequence of the tan -I terms of Equation (17). Actually

this discontinuity could be made to occur at any position along the surface,

simply by choosing a desired direction for the branch cut. Thus, there seems

to be no specific criterion for its location, except that it must occur some-

where on the cylinder.

Without formal proof, it is considered that this discontinuity may be

made physically consistent by assuming a feeding shear layer connecting the

growing vortex to the cylinder at the points of pressure discontinuity.

To incorporate these observations, the second term of Equation (32.4)

i s written

[ i]n
OK i 8K

(zj - Zc)+ (z c zj)X -/%-(zj- _j)=X %-V-
j=l
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On the basis of observed correlation, the term

OK i

 -Sy-(Zc - zj)

is now taken to define the effect of vorticity growth rate of the growing

vortices.

The remaining term

8K

Z-ST- (zj - z c )

evidently describes the force contribution due to the radially connecting

feeding shear layer.

The following conceptual visualization clarifies the physical significance

of this term. First, the impulse concept of defining force due to a vortex

pair requires some contour connecting the vortices. Impulsive pressure

differential across this contour integrates out to the impulsive force generating

the vortex pair.

In the case at hand, the feeding shear layer of length AR may be con-

sidered part of the contour. Barring computer limitation, ARwould ideally

be zero, so that each vortex would grow to full strength on the circle before

separating (becoming free). In this sense, the feeding shear layer may be

visualized as a sort of protuberance attached to the circle. Its main purpose

is to permit vortex growth at a point sufficiently removed from the circle to

preclude c'omputational instabilities. With this in mind, the feeding shear

layer is considered to be a bound vortex sheet whose strength, Us, is such

that UZs/2, the vorticity transport rate, satisfies some specified criterion.

With this concept, the term

8K

X (zj- zc)

does indeed define the force effect of the feeding shear layer. Its counter-

part in the pressure equation, if exactly defined, would require an integral

term. But since its effect is expected to be only secondary upon overall flow

mechanics, the representation is simplified. Conceptually, the discrete

vortex approximation treats the feeding sheet as a train of equally spaced,

bound, "discrete vortices of equal and constant strength. Obviously, the

greater this number, the better will be the approximation. For practical

reasons, the feeding sheet is approximated by a single discrete bound vortex.

Its velocity, if free, would be one-half the strength of the equivalent sheet Us
2
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The product of the strength of this single vortex and this velocity is
therefore

Us

= UA (AR)

4=

K U _ _Z (AR)
Uo a Uo 2 = a

where A R is the length of the feeding sheet. While requirements could be

developed for improving the rigor of this derivation, such detailed con-

sideration is felt to be unwarranted in view of its anticipated secondary

influence on the flow solution. In general, AR should be kept "sufficiently

small that the assumption of second order importance is not violated.

The influence of the terms representing the feeding sheet may be

estimated. Experimentally, _2 _ 2, and if-_ is taken equal to 0. i radius

_2 I_-)= 2 (0. i)_ 03_CD - 2 = 2--_ '

o±i._......_,_^ fo_e_ co°_r_t__.......... are on the order of 1.0, this influence should

be less than three percent. To incorporate this effect, the pressure

equation (17) should have an additonal term of the form

Ks (Yk'Ys) Us " (Xk-Xs) Vs

Uo a (Xk_Xs) 2 +(yk-y s) 2

where the subscript s denotes the bound vortex representing the shear layer.

But because of its negligibly small effect, the correction was not applied in

this study.
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FLOW MODELS

Preliminary investigations have been conducted on two different

potential flow models. For brevity the two models will be denoted Model I

and Model II. Since the chief criticism of the use of a potential flow model

for the vortex shedding problem has been the arbitrary selection of the

flow separation point on the cylinder, both models incorporate self-consistent

methods for determining "separation" points.

FLOW MODEL I

Having an expression for the velocity field, the non-steady problem

of vortex shedding about a circular cylinder will be approximated by a

finite difference technique. At a given time (t) the velocity of the ruth

vortex will be given by Equations (5) and (6). The new coordinates of the

mth vortex will then be found from the solution of the differential equations,

di m

- Um (Xl' xz' "'' Xn' Yl' Y2 .... Yn)

dym

dt
- Vm (Xl, xz .... Xn' YI' Y2 .... Yn)

or written as difference equations

x m (t+At) = x m (t) + u m it)At

Ym (t+at) = Ym it) + v m (t)A t

This procedure applied to all vortex filaments outside the circular cylinder

will give a time history of their displacements. Once the velocity is known,

the pressure distribution on the cylinder and the resultant forces may be

found for each time increl-nent.

Model I approximates the phenomenon of vortex shedding by the

following considerations. Initially, there exists a system of n vortex

filaments outside the circular cylinder. At some characteristic frequency

new vortices are introduced into the flow at predetermined positions near

the cylinder. The velocity of each vortex filament is found, subsequently

giving new positions. This procedure is repeated until terminated by
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choice or by computer time consumption. It is expected that at some distance

downstream of the cylinder, the flow in the near wake will become fully

developed. This flow configuration is further expected to resemble a

vortex street where the discrete vortex elements have "rolled up" into

clouds of vorticity. The initial condition, i. e. , the original number of

vortices, may be chosen arbitrarily.

One of the chief difficulties in an analysis of flow over blunt bodies,

the problem of vortex formation, has heretofore been neglected. Here

the question is whether boundary layer theory can account for the circula-

tion of one vortex; i.e., the strength of a vortex filament.

From boundary layer theory, the rate at which vorticity in the form

of vortex sheets is generated at the cylinder is given by

dF _ d _r _dxdy AUo 2 (54)
d t _ =

whe r e

A" Jh- d fUo 2 -_ _ dxdy
A

(55)

8u 8v
--vorticity =- ---

ay ax

K __

F

2w
- strength of vortex filament

It is easily shown that A = i/Z if v = 0.

Roshko (Reference 17) postulates that

Z

A=
2

(56)

(57)

whe r e

2
--base pressure parameter

_2__ I - Cp = I
P-Po /Ush

l Z = _--U--oo]
PUo
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U s _ velocity outside boundary layer at separation point

= fraction of the original vorticity which remains in the fully

developed wake (experimentally found to be about 0.50)

For Model I, _ Z introduces a Reynolds number effect into the problem as

shown in Figure 8 (reproduced from Reference 17). It is shown in Figure 8

that G 2 = (Us/Uo)2 is always greater than unity. Also if we consider

potential flow over a circular cylinder (Us)ma x = Z Uo, therefore it is

reasonable to assume that the following inequality is true

I <__2 < 4

The model is now complete.

where

Equation (54) may be written in the form

f . Z_K = AUo 2 (58)

f = characteristic frequency

Thus for a given value of Awe have a simple relation between the vortex

filament strength, K, and the frequency of introduction of new vortices,

The determination of the correct combination of these parameters to

simulate the actual flow completes the solution.
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Figure 8. Vorticity Transport Rate
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Effect of Vortex Feeding Period

More than any other single parameter, the vortex feeding period

determines the total time solution that can be reached by the computer in

a reasonable computation time. Computer time consumption depends

primarily upon the total number of vortices in the field, and of course the

larger the strength of each incremental vortex, the greater time span of

vorticity generation represented by that vortex.

The permissible degree of coarseness in discrete vortex approxi-

mation of a vortex sheet was investigated by comparing time solutions

from the Model I program leaving all parameters unchanged except the

vortex feeding period. Figure 9 compares the solutions obtained for

feeding periods of 0.071, 0. 174, and 0.5 a/U o respectively. (The integra-

tion periods were 0.071, .0435, and 0.05 a/Uo).

Peripheral Position of Feeding Point

Peripheral position of the feeding point was, for the Model I program,

the primary means of inducing asymmetrical flow (periodic vortex shedding).

If the peripheral position of the feeding points are symmetrically located,

the resulting flow field is also symmetrical.

While a 1.0-degree asymmetry in peripheral position did induce

asymmetrical flow, the buildup in asymmetry was considered too slow for

practical investigation of periodic vortex shedding because of computer

limitations. Feeding points locate_ 10 degrees ahead of and behind that

±90-degree point were found to result in an acceptably rapid onset of

periodic shedding.

This asymmetry was maintained for all Model I solutions for unsym-

metrical flow presented in this report.

Radial Position of Feedin_ Point

With the objective of simulating actual boundary layer separation as

closely as possible, it would appear that the feeding point should be located

close to the cylinder surface. Initial attempts to locate the vortices as

close as 0.01 radius from the surface invariably resulted in strong inter-

action between the vortex and its image, resulting in wild, completely

random vortex displacements. (Keep in mind that vortex strength has been

determined by specifying vorticity transport rate and feeding period. )

Relaxing this distance to 0. 1 radius permitted a regular solution. While

this was not as close as desired, it was considered a reasonable compromise

and was used in all solutions of cylinder flow.
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Effect of Incremental Integration Time Period

Vortex displacements were obtained by integrating vortex velocities

by elementary block integration. As explained earlier, this integration

method was considered satisfactory on the basis of results obtained

analyzing vortex sheet development in flow past a half-plane. The term

"satisfactory" is qualitative, in the sense that a single solution did not

result as the integration time interval was made smaller (holding the

incremental vortex feeding period constant). Instead, shear layer insta-

bility appeared as the integration was made finer. Also, appreciable

differences were evident in motion of the overall vortex sheet configuration

within the range of integration time periods and total flow development

times investigated.

These results, coupled with results given in the literature (Refer-

ences 13 and 14), led to a qualitative conclusion that a unique solution

using the discrete vortex approximation probably does not exist, and that

a regular solution showing a smooth flow development would be satisfactory

for the exploratory purpose of this study. On this basis, an incremental

integration time period of between 0.04 and 0.05 a/Uo was observed on

all numerical computations for the flow about a circular cylinder except

for those of Figure 9(A). The integration period for Figure 9(A) was set

equal to the vortex feeding period of 0. 071 a/Uo.

FLOW MODEL II

The previously described Model I approach is basically limited in its

applicability because of the necessity for explicitly specifying the vorticity

transport rate and the vorticity feeding point locations. Implicit determi-

nation of these quantities by a potential theory approach to calculation of

separated flow would be highly desirable. Recognizing this, possible

criteria for determining those quantities were investigated.

Initially it was believed that the feeding point should be located at

the separation point. According to classical theory, the separatio_n point

is that point at which the boundary layer velocity profile has zero slope

in the radial direction. Thus, tangential velocities near the surface on

either side of this point are in opposite directions. With this point defined

instantaneously, incremental vortices could be introduced there with

strengths corresponding to the tangential velocity some specified distance

forward of the separation point.

However, examination of tangential velocity profiles on the cylinder

from solutions with the Model I program showed that the separation point
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as defined above was not easily detected. In some cases there appeared to

be a "dead" region wherein essentially zero velocity was uniformly prevalent.

Furthermore, no convenient criterion was apparent whereby the vorticity

transport rate could be specified.

Another approach, along the lines of the free streamline theory adopted

by Roshko (Reference 15), appeared to provide a better solution. For

instance, the vortex feeding point would now be located well ahead of any

separation point, and vortex strength could be determined by the tangential

velocity at that selected point. In the free streamline theory, the point of

flow separation is called the detachment point. It is different from the

separation point defined above in that it is based upon potential theory,

and permits neither a stagnation point nor pressure discontinuity there

(Reference 16). It should be noted that there is a pressure discontinuity
in going across the free streamline.

In studying pressure distribution from the Model I program it was noted

that a pressure minimum invariably occurred near the region where the free

streamline detachment point would be expected to lie. This appeared also to

be the case in the data presented in Figures 6 and 7 of Reference 16. Intui-

tively, this agrees with the notion that flow detachment must occur near that

point where the pressure gradient becomes positive. Sucha pressure

minimum, fortunately, appears to be relatively well defined in results

obtained with the Model I program. For programming, it was therefore

decided to use the first pressure minimum encountered aft of the forward

stagnation point. Following this approach, a Model II program was formulated.

The criteria for implicit determination of vortex feeding point and vorticity

transportrate was simple:

The feeding point is located at the first pressure minimum aft

of the forward stagnation point. Vorticity transport rate is

(UT/Vo)2/2 where U T is the tangential velocity at that minimum

pressure point.

A computer program with this formulation was written and checked

out in both the symmetrical and general (unsymmetrical) form. Unfortunately,

insufficient time was available for its application to the ellipse (i. e., pri-

marily flat plate).

Initially, the total instantaneous pressure from the unsteady pressure

equation was used. Those pressures were determined starting from a

point near the forward stagnation point and well ahead of the probable

pressure minimum point. Successive pressure computations were then
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made at uniform, angular intervals around the cylinder until the pressure

minimum was reached. An incremental vortex would then be introduced

at this point for the ensuing velocity integration of the vortex field.

Use of a single vortex sheet in the region of boundary layer separation

introduces a pressure discontinuity on the cylinder at the point of vortex

sheet attachment. As noted by Bryson (Reference i0), this jump has a

magnitude of PF. Because of this, the determination of pressure minima

using the total instantaneous pressure imposed some numerical difficulty.

Hence the terms contributing to this discontinuity were removed from this

technique of determining the feeding points. This was accomplished by

dropping out the term multiplied by @K in the pressure equation (17).
_t
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COMPUT ER PROGRAMS

The flow Models I and II were programmed in Fortran IV for the

IBM 7094 coupled computing system and the peripheral system which

reads magnetic tape output from a computer program and produces graphic

and alphanumeric tabular output. The major items of peripheral equip-

ment are the SC 4020 optical plotter and the IBM highspeed digital printer.

The obvious application of this combination is the rapid production of

tabulated data and labeled graphs which for this analysis is essential.

The flow chart of the main program for both models is presented in

Figure 10. The block data, IPVAL, initially sets all logical controls

false, and precedes all decks in machine load. True inputs of control

items in the name list, FLOW, decide the path through the flow chart for

each case.

The main programs, KT1M and KTZM, are for Models I and II

respectively. The basic concept in tlaese programs is to provide common

communications between subroutines and call subroutines, and to control

the computation and output time cycles. A blank common area establishes

NN, the number of cells in the field; N_, half the number of cells in the

field; N(_M, N(_-l, N(_P, N_)+l, and the B matrix. Several labeled

commons establish communication to various subroutines.

Both the Model I and II decks and many subroutines have been modi-

fied for the symmetric case. The computer run time of the symmetric

case is approximately one-third of the nonsymmetric case. The elliptical

rather than cylindrical cases are run with the same Model I and II decks but

use appropriately modified subroutines.

The B matrix contains vectors of locations (X and Y), velocities (U and

V), strength (AUK), and radii (ARAD) which are shifted for each new cell

and recomputed for each integration interval. The columns 8 through 13

are computed values of steady and total lift and drag coefficients, etc., for

selected times (TCL) which provide time history graphs at the termination

of a run.

Input data consist of two standard name list arrays, FLOW and DATA,

and the initial cell locations. These are defined in Table II. The single

initial cell case applies to Model I only. The multi-cell initial condition

can be standard input for a given case or read from Tape l0 for continuation
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IPVAL 1BLOCK DATA

KT1M

OR

K T2M

READ FLOW

READ DATA

* CYLINDRICAL OR ELLIPTICAL

SUBROUTINES

** MODEL 2 COMPATIBLE WITH

KT2M

Q_
SINGLE CELL CASEl

PRINT HEADER |

INITIALIZE I

1,

CIRCULAR

HEADER
ELIPS

t

PRINT FLOW J
PRINT DATA

t

l INITIALIZE I

ELLIPTICAL

HEADER

CALCULATE

CIRCLE

T

l

I CALL VEL l*

CALCULATE

I _-i ELL,PEEI

_ ORAPHIINITIAL

CONDITIONS

X (J) CALL VEL

I CALLFORCEI*_ YIJ'
LOCATIONS

xo), v (J) t
I CALL PCOEF

l CAL_LNUCI l**

(_ [ Kp TEST = I

CONTINUOUS CASE k

READ TAPE _ _ --

PRINT HEADER & DATA

_L_ iNCREMENT J

TIME I
ACCOT I

ACCPT I

CALL KIKK

WRITE TAPE 10

Figure 10. Computer Program Flow Chart
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of a previous case. The frequency of printed and graphed output and the

economy of each run is controlled by judicious selection of DELTP, which

is input datum.

Subroutine VEL is called originally to compute the velocity vectors

for the initial condition cells, and subsequently to compute velocity vectors

within the basic time increment (DELT) loop.

The input DELTC determines the incremental time for introducing a

pair ot new cells to the field. This loop consists of two subroutines and

the computation ot the X and Y location vectors. The FORCE subroutine

calculates the steady and total lift and drag forces and stores them in the

B matrix. F(_R2 is a Model ]/deck required because of the redimensioning

of the B matrix. The NUCI or NUCZ subroutines introduce the new cells

for Models I or II, respectively. The first seven columns of the B matrix

are shifted to make room for the new pair, one cell in the lower field and

one cell in the upper field. The X, Y, U, and V components and the

strength for the new cells are introduced, and the counters adjusted.

Within the DELT loop, the subroutine VEL is called, followed by the

output time test. Whenever DELTP is exceeded, subroutine PAP is called

and normal field information from B matrix at a given time is printed,

graphed and written on Tape 8. The graphing provides for three con-

..... _'--_ grap]_ defined by the XR input. Additional output from sub-

routine PC(_EF consists of the printed and graphed steady and total pressure

coefficients and total lift and drag coefficients with and without the F term.

The program is terminated by either of two conditions controlled by

input variables DNC, desired number of cells in field or TFIN, final time.

Both tests call subroutine KIKK which writes terminating case data on

Tape i0, calls PAP, PCOEF and PAPF, a subroutine for printing and

plotting the steady and total, lift and drag coefficient time histories as

computed throughout the run in subroutine FORCE.

In the event the requested final machine time is exceeded, a drop-in

package to modify the Fortran IV system permits a KIKOFF subroutine

to be called which in turn calls KIKK and a normal case exit is executed.
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Table II. Computer Program Input Definition

Name list FLOW

BINARY

DMU LT I

ELIP$

VARAL

CALCG

Name list DATA

TIME

DE LT C

CONKC

DELTP

T FIN

TPO

TCO

NN

DNC

ETAU

ETAL

DELR

TK

True to read Tape i0 input and continue case.

T rue for multi-cell initial condition.

of ITH, X, Y and AUK values on (I12,

True for elliptical case.

True for variable alpha computation,

constant values of C(_NAS for _ Z

Currently not used.

Reads NN cards

3EIZ. 0) format.

false uses input

Non-dimensional current analysis time, initial case = O.

Increment for introducing new pair of cells.

Factor to compute DELT from input DELTC.

Increment to call for print and graph output.

Final computation time.

Error control on output time = 0. 000001.

Error control on new cell time = 0. 000001.

Number of cells in field for initial condition; number

of pairs for symmetric case.

Desired number of cells to complete run.

Angle for location of single upper cell. (Model I only)

Angle for location of single lower cell. (Model I only)

Increment beyond unit radius for initial cell location.

Table of strength values.
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ALFA

BETA

C( NA$

MESHN_

XXL"

YR

YB

YT

iuP i
IBOTI

MESHCP

PMAX }PMIN

YYBOT _
YYTOPI

CASEN(_

Table II. Computer Program Input Definition (Cent)

Variable alpha values vs. TK. (Model I only)

Elipse definition = a-b/a+b. (Model I only)

Constant a Z value, required for initializing even if

VARAL true. (Model I only)

Argument of MESHI subroutine which adjust grid on

graph for PAP output.

Arguments of LIMITI subroutine which define limits

of graph scale for X left, X right, Y bottom, and

Y top.

Character code for identifying upper and lower cells

on graph.

Argument of MESH/ subroutine which adjust graph

grid for PC_EF output.

Arguments of LIMITI subroutine which defines limits

of graph scale for PC_EF output.

Arguments of LIMITI subroutine which defines limits

of graph scale for PAPF outputs.

Case number (Format F 10.4), suggested AABB. CCDD

where AA month, BB date, CC year and DD run number.
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SOLUTIONS WITH MODEL I PROGRAM

UNSYMMETRICAL SEPARATED FLOW AROUND A CIRCULAR

CYLINDER

Principal limitations of the Model I computer program are that

vorticity transport rate and feeding point locations must be specified on

the basis of experimental data. Nevertheless, brief exploratory computer

solutions obtained with this program indicated surprising similarity to

physical flow in the eddy formation and shedding. Computed cylinder

pressure distributions and force coefficients appeared to be of the expected

order of magnitude. Time limitations imposed by a six-month study were

rather severe. The tight schedule did not permit delay in favor of improved

solutions at a later date before making comprehensive correlation studies

of pressure and velocity distributions on the cylinder and in the wake.

Therefore, in spite of these limitations, it was decided to make an extended

computer run with the Model I program in order to determine cylinder

pressure and wake characteristics in a fully developed flow.

Cylinder Pressure Distributions

Pressure distributions around the cylinder at approximately the time

of maximum and minimum lift coefficient are shown in Figure 1 I. The

circular symbols outline the total pressure distribution. Discontinuous

behavior of the total pressure distribution in the vicinity of 90 and 270 degrees

is caused by the proximity of local vortices, and by vortex feeding sheets

radially connecting the feeding points to the cylinder. The curves outlined

by the asterisks constitute partial pressures which do not include the effect

of vorticity growth rate at the feeding points.

Pressure distributions around the cylinder, of the type shown in

Figure ii, were computed at time intervals of 2. 5 a/U o and displayed in

both tabular and graphic form. Concurrently, these pressures were

integrated by Simpson's rule to obtain cylinder force coefficients. These

force coefficients were displayed in digital form, and served as convenient

checks on the cylinder forces obtained by the generalized Blasius theorem.

Using these pressure distributions, pressure coefficient time his-

tortes were plotted for eleven points on the wake-exposed portion of the

cylinder. They are shown in Figure 12. These pressure time histories

were made to observe any characteristic time behavior, and permit an

estimate of the average pressure at these points over the time period of

well developed flow. Such average pressures would presumably be com-

parable to those that might be obtained by a pressure manometer in

physical flow.
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Figure ii. Cylinder Pressure Distributions at Times of Max and Min C L

Average pressure coefficient values were obtained in this manner

at ten-degree intervals around the cylinder and are shown in Figure 13.

The values at i00 degrees and 280 degrees were found to be singularly

displaced from those nearby. Therefore average pressures were determined

at 95, 105, 275, and 285 degrees and used in defining the curve in this

area. The values at 100 degrees and 280 degrees were ignored. The

reason for these sharp peaks is not clear. Grossness in mathematical

simulation of vorticity generation effects in this region is probably the

basic cause.

Force Computation

Time histories of instantaneous forces on the cylinder were computed

by the generalized Blasius theorem. Mathematical development of the

force equations are given in a previous section. As initially derived, these

equations did not include the contribution due to rate of change in vorticity

at the feeding points. Some difficulty was encountered in correctly defining

the mathematical model from which this particular force contribution could

be determined. As a result, the correct force expression including the

effect of vorticity growth rate at the feeding point could not be incorporated

into the computer program in time for the force computations presented in

this study. Comparison of these initial force values with those obtained by I
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pressure integration showed the error to be small. Therefore, since this

computation method is much faster than numerical pressure integration,

these force equations were used to determine the detail force time histories

shown in Figure 14.

2.0

1.5

C D 1.0

0.5

0

2.0

I
) e

10 15 2O 25 30 35 4O

VORTEX FEEDING PERIOD

0.174
1.5

0.50

I"00VALUES OBTAINED BY I_ESSUl)_ INTF G'TION INCLUDING '[" EFI_CT / __ __

o., I

-I .0

-I .5 1 /

10 15 20 25 30 35 40

NONDIMENSIONAL TIME

Figure 14. Effects of Vortex Feeding Period on Lift and Drag

Cylinder force time histories for two cases are shown. The one

extending to a nondirnensional time of 17 was obtained with a vortex feeding

period of 0. 174 and contained a total of Z00 vortices in the field at the final

time. This shorter time history of lift and drag corresponds with the flow

development shown in Figure 9(B).

The longer time history extending to a nondimensional time of 40 corre-

sponds to the flow development shown in Figures 9(C) and 15. This solution

culminated in 160 vortices generated with a feeding period of 0.5 between

successive pairs. For this longer run, pressure distributions on the

cylinder were determined periodically at a time interval of Z. 5 a/U o. At

the same time these pressures were integrated with Simpson's rule to

determine lift and drag coefficients. Determination of force coefficients

in this manner is mathematically straightforward, being based only upon

the unsteady pressure equation. Effect of growth rate at the vortex feeding

points are thus included in these coefficients. The circle points shown in

Figure 14 are force coefficient values obtained by pressure integration.
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Wake Characteristics

The correlation of computed cylinder pressures and forces with

experimental data provide the most critical evaluation of applicability of

potential flow theory to analysis of separated wake flows. A second but

nonetheless important area of further correlation for which experimental

data exists are the pressure and velocity profiles of the near wake.

Roshko in Reference 17 presents averaged pressures along the wake center-

line. Kov_sznay(Reference 18) and Spitzer (Reference 4) present data on

wake velocity profiles. To obtain results comparable to these data, wake

pressure and velocity profiles were computed at various downstream

sections in the near wake during the extended Model I solution. At each of

these sections, average velocity profiles across the wake were determined

by averaging nine instantaneous velocity profiles sampled uniformly over

the time period from 17 to 40 a/Uo. Solutions at earlier times were con-

sidered to be affected by the starting transient, and were not included.

While a more accurate approach would be to obtain average velocities by

plotting velocity time histories at each point considered, sufficient time

was not available to permit this amount of detail. Pressures along the

wake centerline, however, were obtained in this manner. The general

shape and smoothness characteristics of instantaneous wake profiles, is

illustrated by the flow configuration for t = 40. 66a/U o. The vortex

arrangement is shown in Figure 15 with vertical lines superimposed to

indicate the downstream wake sections that were used in the computation.

6.0

y/a o

-6.0

, _ .°
' o

' ' 5.0'0

•. ,. P

, , ..
p ,

!i'i

25.0

t = 40.'67_U o

82 PAIRS

iiiiiii

iillii'i
iiil_'i'i'
I _ ;I

ilill:' 
,iiiii::
Illll i

30,0'

Figure 15. Characteristic Vortex Configuration (Model I). (Vertical

Lines Indicate Section Where Instantaneous Wake Pressure

and Velocity Profiles were Computed.

See Figures 16 and 17)
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The corresponding velocity and pressure profiles are shown in

Figures 16 and 17. The circled points represent total pressure, while the

starred points reflect pressures which do not include the effect of vorticity

growth at the feeding points. The profiles are generally smooth except

when discrete vortices are close enough to cause significant local distortion.

One discrepancy has been noted. The asymptotic value of pressure coeffi-

cient far from the wake appears to be slightly biased from zero. In this

case the asymptote appears to be about -0.1. Without certainty, it is

believed that this may be associated with the fact that cylinder pressure

distributions at the forward stagnation point in Figure 15 also are not

precisely 1.0. Interestingly enough, an examination of the unsteady pressure

equation (17) shows that for pressure coefficient to approach zero as y

becomes large,

N aKj _ xjvj - yjuj-- tan" 1 YA + K

j=l Ot x j=l j xj2 + yjZ
--- 0

In the Model I solution, the discrete vortices are of constant strength

except at the feeding points. Furthermore, the vorticity growth at the

lower feeding point is the negative of that at the upper feeding point, with

their locations 10 degrees forward and aft of the 90-degree axis, respectively.

Hence
N xjvj - yjuj

Kj
j=l xj2 + yj2

W_
--" (100 degrees + 80 degrees)
8t

or

N x.v. - uj Z3 3 _ 8K upper e_
Kj -_ v-- =v-- = 0. 462

j=l xjZ + yj2 8t 4 v

On a physical basis, the reason for this particular relationship is

not apparent. Superficially, at least, it might be conceded that the time

N xjvj - yjuj
average value of the term _ Kj might be some constant

j=l xjZ + yj2

value. But that its instantaneous value should be invariant implies a con-

dition not understood. Yet the fact that it is being satisfied to within the

magnitude of the bias (approximately 0. 1) is clear from the computations.

As a matter of interest, the magnitude of this bias, i.e., the asymptotic

pressure coefficient at large values of y, observed in the nine time samplings

of wake pressure are shown in Table III.
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Table Ill. Wake Pressure Bias From Zero

Uot

a

17.26

22.87

25.42

27.96

30.5

33.04

35.5

38. IZ

40.66

x

(Cp) at -_- = Z0.0

y/a = +I0

-0. II

-0. 022

-0.12

+0.09

-0. 023

-0.19

-0.18
-0.14

-0.075

y/a = -I0

-0.09

-0.01Z

-0. I0

+0. O88

-0.01Z

-0.145

-0.151

-0.143

-0.05

A possible alternative interpretation n-_ay be expressed by the following

argument. It is noted that the above expressions leading to finite pressure

at infinity stem from the inclusion of the term(tan -I -yj/xj)in the potential

equation (13). If, at infinity, the condition of Cp = 0 is imposed, the right-

hand side of the pressure equation (7), namely C(t), could be required to

cancel out the troublesome term above. In this way, the pressure at

infinity could be made exactly zero.

Pressures along the wake centerline were also computed at each of

the nine time points tabulated above. The average of these values have

been used to construct the average pressure coefficient along the wake

centerline. This curve is shown in Figure 18. For comparison, Roshko's

data from Reference 17 are also shown. These data were taken at a

Reynolds number of 14,500.

The reduction of wake velocity profiles was accomplished in a manner

roughly analogous to that described by Kovasznay (Reference 18) and

followed by Spitzer (Reference 4). The mean pressure at a point was first

determined by averaging the nine wake velocity computations; deviation

about this mean was then determined.

Thus

9 --2

X (Vi'V)

i=l

llZ

where U + V

9

X V i
-- 1
V -- --

9
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Figure 18.
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v'd

Average Wake Pressure on Center Line

I0

The mean resultant velocity profile for x = 3 and 7.5 are shown in
a

Figure 19 with Kovasznayl s data (Reference 18) near the same downstream

distance shown for comparison. The data by Kov_sznay were taken at a

Reynolds number of 56, just above critical value. The rms deviations for

these same downstream points are shown in Figure 20 with Spitzer's data

superimposed for comparison. The Reynolds number for the data by Spitzer

is given as 2.5 x 105 .

Wake Velocities for Vortex Shedding

Average wake velocities related to unsymmetrical flow about e circular

cylinder were studied using the wake velocities generated as output from the

Model I program. Wake center-line values of horizontal velocity for the nine

time points ranging from 17.27 to 40.67 seconds were averaged and the mean

velocity for each of seven wake locations are plotted and joined by the con-

tinuous curve shown in Figure 21. The mean velocity curve obtained from

an investigation of cylinder wake properties by Kov_sznay (Reference 18) is

represented by the dashed curve of Figure 21.
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Figure Zl. Center-Line Wake Velocity vs Distance Downstream

SYMMETRICAL SEPARATED FLOW ABOUT A CIRCULAR CYLINDER

In physical experimentation involving rectilinear motion of a circular

cylinder at Reynolds number above 40, the flow conditions are initially

symmetrical. However, inherent turbulence in the flow or asymmetries in

the circular shape eventually cause the flow symmetry to break down. The

final state, depending upon the Reynolds number, may or may not exhibit
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periodic vortex shedding. A well-known experiment involving cylinder flow in

the initial symmetrical state is that by Schwabe (Reference 19). The Reynolds

number for this experiment was 580. Flow development was recorded to a

time of 9a/U o. Streamlines were photographed by the aluminum particle

technique, and pressure distributions were determined by use of these

streamlines. From these data Schwabe determined a C D time history that

reached a value between 1.9 and 2.0 at Uot/a = 6.0.

A simulation of Schwabe's experiment was attempted with the Model I

program. Since both vortici_r transport rate and feeding point location had

to be specified, a unique solution could not be obtained. Therefore the

principal objective was to determine the particular vorticity transport func-

tion which would produce a drag curve similar to that in Reference 19. If

successful, such a reference curve of vorticity transport could be helpful

in checking results obtained by a more sophisticated approach wherein the

vorticity transport rate and feeding point locations are implicitly determined

in the solution. Feeding point location was maintained always at the 90-

degree position, and feeding period was 0.52 a/U o. The integration period

was 0. 0435 a/U o.

Since the condition of flow symmetry considerably simplifies the velocity

field computations, a separate Model I program incorporating this simplifica-

tion was checked out and used for this study. A three or four minute computer

run was normally sufficient to obtain a solution out to 17 a/U o with this

'rsymmetrical" program. An initial estimate of the vorticity transport rate

was made from the relationship

dY i Us 2

Ut Z UoZ

i 2

2 _ = I - _'p wake

where _-w is the average pressure coefficient over the wake-exposed portion

of the cylinder.

Pressure coefficients on the cylinder are given in Reference 19 for

various stages in the flow development. These pressures are fairly uniform

over the wake portion. Hence, using these average wake pressures in the

relationship above, a time variation of vorticity transport rate was derived

and is shown as curve 1 in Figure 22. Curve 2 represents an initial

approximation which resulted in drag coefficient growth illogically high

compared with available references. Curve 3 of this figure depicts a rate
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which gives reasonable correlation with Schwabe's data, and Curve 4 has

good initial agreement but displays a radical departure with vortex growth.

Drag coefficient variation curves corresponding to the above vorticity trans-

port curves have like identification numbers in Figure 2Z (B) and clearly

illustrate the sensitive nature of changes to the vorticity transport rate.

Vortex patterns generated for _2 curves Z, 3, and 4 are presented in

Figure 22 (C).

These plots demonstrate a similar sensitivity to variations of the

vorticity transport rate. Plot Z shows a forward motionof the vortices which

are introduced at symmetrically located feed-in points of ±90 degrees. This

trend is considered to be a result of the vortex build-up without obvious tend-

ency toward shedding. Plot 3 displays the typical shape for one-half of a

symmetrical vortex, and Plot 4 shows the symmetrical case for incipient

shedding. In this case, the upper vortex is reflected to complete the sym-

metrical contour. The number of discrete vortices shown varies according

to the elapsed time selected and the rate at which additional vortices are

introduced.

Repeated attempts at readjusting the vorticity transport curve were

made in an effort to establish correlation between input and output. The

trend of a 2 with drag coefficient and integrated area of the transport rate

curve related to maximum drag coefficient were studied in making altera-

tions to the _ 2 time variation. Although some measure of correlation was

established, the sensitivity of transport curve changes seems to indicate

that transport rate cannot be specified by a general curve but must be

determined as an implicit part of the solution.

Computer plots depicting the development of discrete vortices in the

flow are shown in Figure 23 for the solution corresponding to curves 3 of

Figure 22 (A) and (B).

The distribution of cylinder pressure corresponding to the vortex con-

figuration of Figure Z3 (E) is shown in Figure Z4. Pressure discontinuity at

90 degrees is due to the single vortex sheet connecting the feeding point

radially to the cylinder surface. Magnitude of this discontinuity is _ Z. The

large variation in pressure between 90 and 180 degrees is indicative of

considerable reverse flow in this region. The forward stagnation shows a

pressure coefficient of approximately 1.3 whereas experimental data gener-

ally shows the pressure there to be 1.0 with possibly i0 percent maximum

variation (Reference Z0).
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SYMMETRICAL SEPARATED FLOW ABOUT A FLAT PLATE

Separated flow about a fiat plate normal to the flow is of interest for the

following reason. It is known that, experimentally, the flat plate drag

coefficient of 2.0 is nearly independent of Reynolds number. Furthermore,

flow separation always occurs at the edge. It would appear then, that

vorticity transport is the only major parameter requiring definition. If so,

the approach developed in this study should result in a drag coefficient that

agrees with experiment if the correct vorticity transport rate can be specified.

With this in mind, the Model I program for symmetrical flow about a

circular cylinder was extended to the more general case of s_mmetrical

flow about an ellipse. The special case of flow about a flat plate was then

studied by using an ellipse with major-to-minor-axis ratio of I0. It was

believed that this ellipticity was sufficiently high to simulate a flat plate, yet

avoid the infinite potential velocity at the edge. The vortex feeding point was

positioned at 0.02 mean radius from the surface on normal I0 degrees aft of

the vertical axis. A constant _2 value of 1.5 was basedupon the data of

Reference 17.

Only one computer solution for'the flat plate was obtained. The results

show characteristic wake development basically similar to that obtained for

the Model I solution to symmetrical flow about a cylinder for the case of

excessive vorticity transport. (Figure 22(C).) The wake pattern outlined by

the vortices at a nondimensional time of 61.72 is shown in Figure 25 (A). Its

similarity to Figure 22(C) is evident. The computed rise in drag coefficient

is shown in Figure 25 (B).
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SOLUTIONS WITH MODEL II PROGRAM

UNSYMMETRICAL FLOW ABOUT A CIRCULAR CYLINDER

The Model II program for unsymmetrical flow was used with essentially

the same integration paran%eters as for the extended Model I solution. Radial

position of the feeding point was kept at 0.1 radius from the cylinder surface.

Feeding period was 0.5 a/U o and integration period was 0.05 a/U o. Some

initial experimentation was made to determine the asyxnrnetry required to

achieve rapid onset of periodic shedding. A set of Ig pairs of initial vortices

were determined by situating them on the uniform flow streamline passing

through I. 1 cylinder radii. Their strengths were determined from the local

tangential velocity and a time increment of 0. g a/U o during which vorticity

at a point was accumulated. It was found that if vortices were used for only

one side, the asymmetry was excessive and numerical instability resulted.

Using quarter-strength vortices on one side resulted in a stable solution

with acceptably rapid onset of periodic shedding. This initial configuration

of vortices is shown in Figure Z6. A one-hour computer run was made.

+2.0

,,, -F_'o

.+1.0 _ w _. _ _,

y/a o

-1.0

L # .0 I r

(

-2.0
-1.0 0 +! .0 +2.0

x/a

Figure 26. Initial Cell Locations

This run produced 850 graphs of vortex position and time histories of C L

and C D to a nondimensional time of 40. The graphs of vortex position have
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been made into a movie which aids considerably in developing an insight into

the flow mechanics. Selected frames from this movie are shown in Figure 27,

together with corresponding pressure distributions. The final vortex con-

figuration is shown in Figure 28. Time histories of C L and C D are shown in

Figure 29. Note is made of the fact that these force time histories do not

include an incremental effect due to time rate of change in vorticity at the

feeding points. This effect is secondary, as discussed previously, and it is

believed that the curves in Figure 29 may be considered computationally

correct to within l0 percent.

Pressure distributions are shown for the first three frames in Figure 27

to illustrate their typical appearance. The "steady Cp" and the pressure

distributions with and without the effect of vorticity growth rate are shown.

Circle points represent total pressure, whereas the starred curve is the

one used for determining the minimum pressure point according to the partic-

ular Model II approach adopted for this study. The time variation in feeding

point peripheral position and vorticity transport rate at the upper and lower

vortex feeding/_r_\points are also shown. The "steady Cp" of Figure 27 is

simply 1 - (__)2 hence indicate the magnitude of local tangential velocity.

\ /
The force coefficients of Figure 29 are significantly greater than those

encountered experimentally. For example, the mean drag coefficient is

about 1.6 whereas experimentally this should be 1.2 fdT subcritical Reynolds

numbers (Reference 15). Maximum lift coefficient of over 2.0 shown in

Figure 29 compares with 1. 1 or 1.2 at subcritical Reynolds numbers,

Reference 20. It was concluded from this comparison that vorticity cancel-

lation effects, not included in these results, are important.

In Reference 17 Roshko (after Fage and Johansen) utilizes a parameter,

¢, which defines the net percentage of the total vorticity generated in the
I I

boundary layer that moves downstream by convection in the Karman vortices.

Fage and Johansen (Reference l?) concluded from experimental evidence

that ¢ must be 0.5. According to Gerrard (Reference 20), reverse flow

velocities in the wake are responsible for a significant amount of counter

vorticity.

It is observed that incremental vortices in Figures 27 and 28 do not

show a great deal of mixing, certainly not enough to indicate a 50 percent

reduction of vorticity. On the other hand, the "steady Cp" curves in

Figure 27 show that relatively large reverse velocities exist over some

rearward portions of the cylinder. It is reasonable to expect that these

areas of high reverse velocity would generate a significant amount of

counter vorticity. Such counter vorticity in turn would increase the

vorticity cancellation.
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Figure 30.
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Variation in C L and C D at Time of Second Peak in C L

(Ref. Figure 29)

As a first approach in accounting for this counter vorticity and vorticity

cancellation, the parameter _ was applied directly to the primary vortex

feeding points. The value of _ was varied between 0.5 and 1.0 and computer

solutions _vere obtained to determine the effect on lift and drag coefficients.

The variation of C L and C D at time of second peak in C L in Figure 29 is
shown in Figure 30. The solutions for c = 0.5, 0.7 and 1.0 were obtained

with identical initial vortices. The solution for _ = 0.6 was obtained with

the initial vortices reduced in strength by _.

From these results it appears that a value of _ between 0.6 and 0.7

results in lift and drag coefficients in agreement with subcritical Reynolds

number data. This value is higher than the 0.5 given by Fage and Johansen

(Reference 17). It may be noted in Figure 31 that significant reversed

velocity still occurs for _ as low as 0.6, although the total pressure distri-

bution is now fairly uniform over the wake.

_rake development for e = 0.5 is also shown in Figure 31, together

with corresponding cylinder pressures. These results show very little

reversed velocity of the cylinder.
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For _ = 0. 7 the Strouhal number is 0.2Z from the first cycle of lift

force. Flow development is shown by the incremental vortices in Figure 32,

for _ = 0.7, at three time points in the flow. Curves of I - V 2 on the

cylinder surface are indicated by asterisks as "steady Cp." Total pressure

coefficient is also shown in Figure 32. Partial force time histories for

c = 0.5, 0.6, and 0. 7 were shown in Figure 29 superimposed on the time

history obtained for _ = I. 0.

UNSYMMETRICAL FLOW STREAMLINES

Streamlines for certain flow conditions were determined from the

stream function represented by the imaginary part of the complex potential,

Equations (2)and (3). The particular form programmed for the computer was

_(x, y)_
U o a

n K

+_

j=l -U°a log

The technique adopted to construct computer plots of flow streamlines

uses letters of the alphabet to denote lines of constant4. Values of the stream

function are initially determined at rectangularly spaced grid points placed

uniformly over the field of interest. The stream functions determined at

the forward row of grid points are then assigned alphabetical letters. Inter-

polation is used to locate the position of these latter streamlines in

each cross-stream grid point row within the grid system initially determined.

Consecutive spacing of the cross-stream grid point rows is made sufficiently

close that a clear indication of the streamlines is obtained without connecting

them by lines. Figure 33 shows computer plots of streamlines obtalned in

this manner. For this solution c = 0.7, and the initial vortices were also

multiplied by this factor.

Since the technique adopted determines the streamlines passing through

preselected points, this method does not permit accurate determination of

the zero streamline for unsymmetrical flow. Further iterations could be

made to determine this zero streamline accurately, but this was not felt to

be warranted.
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Figure 33. Unsymmetrical Flow Streamlines
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SYMMETRICAL SEPARATED FLOW ABOUT A CIRCULAR CYLINDER

Further correlation of computer results with experimental data was

made by simulating Schwabe's experiment for symmetrical flow with the

symmetrical version of the Model II approach. This program was identical

to the Model I "symmetrical" program discussed previously, except for the

implicit determination of vorticity transport rate and peripheral location

of the vortex feeding point. Radial location of the vortex feeding was main-

tained at 0.1 radius. Vortex feeding period was 0.5 a/Uo, and integration

period was 0.05 a/U o. An initial group of elemental vortices were arranged

along the uniform flow streamline passing through i. 1 radii at the 90-degree

point. This was similar to the Model II unsymmetrical problem. For

this case, however, the vortex strengths were symmetrical. Flow

development shown by the incremental vortex positions in Figure 34 are

for one side only. In this particular run the graphic reflection process

did not function properly, and the circle points were not correctly plotted.

The circle points should be ignored. The "steady Cp" curves of Figure 34
are shown to indicate the magnitude of reverse flow velocities along the

cylinder surface. Total pressures are also shown. The pressure discon-

tinuity at approximately 60 degrees in the pressure curve, as previously

discussed, is due to a vortex sheet attaching the feeding point radially to

the cylinder surface. A one-hour computer solution resulting in a drag

time history to a time of approximately 60 a/U o was obtained for this case,

and is also shown in Figure 34. The experimental drag curve by Schwabe

(Reference 19) is superimposed for comparison. Points marked by a cross

are drag values obtained by pressure integration, and include the effect of

vorticity growth rate at the feeding points. The flow configuration at

t = 62.65 a/Uo is shown in Figure 35.

The time variation of vorticity transport rate, Figure 36, is shown for

comparison with the estimated curve used for the Model I program (Fig. ZZ).

Feeding point location is also shown in Figure 36 because of its significant

difference from the 90 degrees assumed for the Model I solution.

The vorticity reduction parameter, _ , applied at the vortex feeding

point could possibly produce results more in agreement with experimental

data. With this in mind, a computer solution was obtained with _ = 0.6.

Position of the incremental vortices at a time of 14.65 a/U o and the

corresponding steady and total pressure distributions for the _ = 0.6

solution are shown in Figure 37. Computed time development of drag

coefficient is also shown.
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The use of initial vortices to start the solution was based upon

experience obtained with the Model I program. The extended time history

of C D in Figure 34 was started with initial vortices. This accounts for the

initial value of C D equal to 0.5 rather than zero. By accident it was

discovered t_,at initial vortices were not necessary in the Model II program

for preventing vortex instability. Figure 38(A) shows the solution o£ vortex

positions at Uot/a = ZZ. 7 obtained without initial vortices. Figure 38(B) shows

drag build-up to this same time. It may be seen that this curve is essentially

similar to that shown in Figure 34. Principal differences are that the drag

starts from zero, and appears to be slightly higher, reaching C D = Z. 0 at

Uot/a = 18.5. In Figure 34, maximum C D following the gradual rise is

attained at a time of 1Z. 5 a/Uo; thereafter a gradual decrease results, and

beyond a time of about 36 a/U o the average C D seems to hold at

approximately 1.0.
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SYMMETRICAL FLOW STREAMLINES

Streamlines were determined for the flow solution depicted in Figure 38

and are shown in Figure 39. Examination of the streamlines in Figure 39

shows that they are quite smooth, even in areas where the streamlines pass

close to discrete vortices. Superficial consideration of the effects of these

vortices indicates that local warpage of the streamlines should occur near

the vortices. Part of the smoothness may occur from the coarseness of the

interpolation method. But the smoothness of these lines even through the

vortex cloud indicates that overall streamlines are actually smooth, except

in areas extremely close to the discrete vortices.

Most surprising is the fact that the streamline outlining the wake cavity

in symmetrical flow is well inside the reaches of the discrete vortices. It

is not difficult, with hindsight, to see that this must be so, since pressure

recovery must increase as the streamlines become smoother. A comparison

of wake width at Uot/a = 6.95 with the data by Schwabe (Reference 19) shows

the computed values to be somewhat narrower.

The zero streamline of Figure 39 is on the order of - 1 x 10 -6 . This

streamline clearly shows the shape of the wake cavity. Its early disappear-

ance near x = l, y = -1 is a result of coarseness in the numerical interpolation

scheme. A more refined appreciation of its behavior in this region may be

gained from the digital printout of stream functions at the indicated grid

points (Table IV).

- I01 -

SID 65- 1730



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

0

U

o
o

- 102 -

SID 65- 1730



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

0
°w-¢

u

4_

H

,n

c

i

II

)<

C

l"¢,

i-4
|

II
lJ-
>(

c
IN
,/.,

ii

I

II

_,_

o
r'-

I

ii
r_

OOOOCCCCOGO
IIIIIII

_ _ _ _ _ _ _._ _ _' _

___0_

_222ZdgZ22
I I I I I I I I I I I

0000 CO CO00_
IIIIIII

_ZZZ2dZd2d2
IIIIIIIIIII

C C COCCCCCC_
lllllll

0 _ _, C _ _, _ C C _ C

d22ZddZZdd2
IIItlILIIII

0

___00__ _0

_dd_ ......

000000C, 00C

IIIIII

_0_0__

__C_

_ _ C _ _ _ _ _ _ _

__ _0000
O00C0000CO
IIIIII
_; _ _ _: _ _ _ _ _ _

_: _ _ _ _ _ _ _ _. _

_ _, _ _ _ _ _ _ _

_ _ 0 _ _ _ _ _ _,

g .... ...._

cO000C OCOC

IIIIII

_ _ _ C _ _ _ _', _. _

_gZd_Zg_

..... __
IIIIIIIIII

- 103 .-
SID 65-1730



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS ]DIVISION

0

v

0

u

o

I

II
_r

C
h-

I

II

_r

X

c
P,

I

II

or.

C O C r--_,--_ C C_ G.
C O C C C ¢r_ _" eq

I I I I I
LL LL L_ LL t' LL. LLJ LL

O" O_ ,,t- I'-- C, C C C
h- _, ,,tC" ur C C O

.,t Lr' O '_ m C C C

•4" C _ ,.£ C _. C C

I I I I I

IIIII
_ _ _. _. _ _ _ _

__CCC

_e_OCCO
C__.COC

IIIII

C C C C ,-_ 0" O .O

I I I I
L LL U.. LL LL LL. LL LL
C f" w C O" C C C

_ c r-- (,; _. o c o
(.,, o ..r I'- --_ C.; C C
O" C C C ,,T C L C,

L_ C E C _'- C' C C

I I I I I

Illlllllll

00000o o0_0_ _

gggggggg2dZ22

IIIIIIIIII

COCOC CC C _ _,_ C_
COCC CCCC _,_ _ E
COO C _C C C C _ _ _,_

gddgddgdg Z J

C O C C O O" O" C ,--_ C O C C

I I I I I I I I I
UJ LL L.. LL' LL L._ U- LL L, LL LL L. U_
C C C C C C C C. LF ¢x .,1" C- ,4"
C, C C C _ C C7 C Lr, C h .. {x
C C C: C C C C C t'_, C I'-- C q,.;

C.; C. C_ {_ C C" C._' C ,_T C_, (J C O
_. ,,.. (.. L_ t,.. L C L O: ,,.--, _ I_- . --
¢'_ C C 0 r.5 C 00 I_ C t.r C _',

 j-ggj:  j 2292

c
r.-
c{

I

II

V')

COOO_

II

_,_h_O

__C

_o_,

 g22 2
IIIIII

IIIIIIIIIII
_ _ _ _, _., _ _ _ _ _ _ _ _ _ _.
C C C C C C C C 0 m _ _ _ _: _,
C _ CC CCCCOe. _ _ _ _
CCOCCCCCCO_ _

CCO_CCOCC_C_

gdg  dddg2 22  

- 104 -

SID 65- 1730



NORTH AMERICAN AVIATION. INC. SPACE and INFORMATION SYSTEMS DIVISION

O
Of
0¢

J

11

"_ C

0

U It

X

N

_ f_,

||

C

II

CGCCCCff _ _
IIIIIII

_ _ _ _ COCO

_C_C_GCCO

 22d 2gjdd
IIIIII

IIIIIIII

CCCCOC _,_O_

C_CC C_Cp _ C¢

Jd d Z2 22 

IIIIIII

_e_ _OOCOC
__O0000C

_ _0_ OOCO_
_ _COCOC

 222 ddddd
IIlII

CCC_O O _p

IIIIIII

__ _ C C C C _

_ _ _ _ C C C C C

;2222g   g
IIIII

IIIIIII1

COCOCO0__

OCC OC O_C _ _
COO00C_C _

OOOC CC_ OO_
OCOOC O_P_ _

dgddddg    

C O' C O C" C "-",--' C C C
P" _; P": _ " _ C C, C O C
I I I I I I I I

;J.. LL! LL I.,.! LL IJ' LL LL" LL LULL:
C C O C. C _1_ ,_ r,,.,C ,,C
C C C C C C C _ C U" r_
C C O C C C C: _ "_ O C"
O C C C C C .,I" <.- I'.- r." ,..'_
C C C" _ C C h- h- ,--_ C r,,J
C ._ C, C C C ,C C ,,C r_ _ -
C C C O C C 4) CP _ c _.÷

- 105 -

SID 65- 1730



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

C

II
IJ"

r..; C C _,.., _.._ R. t_j t_ t-_ (_i II, (x o,j ix
C' C O O _ C C C O C (-J O C O

I I I I I I I I I I I
i.LJ i,, LL LL LI_ LL I._J LULL LL, LL_ LL U, LL'
E t'% C (7. ,.ID ,-._ h E Q C {k. h ,.,1.. r.,.
i,... C, E. C ,.., C,- 0. i,.. a_,,_., r,... C (x. ,.£
,4.- O ,,C ,,T i/. u-, er ¢," o_, .,4.: ,-.o E.. ,--.4 L/'_
g{. O" -,1" C _1 "4" a.1 Or: CC (% ,-_ _x, __ t_',
(::7' t"_ ,,,,,_t''. ,-'_ C(X:, a. ,,,O O" ,"-_ 0 _ ,.[ o_
(% C ,C ,,7 _'_ _ 0 C ,_.' ,_" r_" ,_ _ C
..I" ,D. C' t,", o5 ,-,,, O" O" ¢r., _': I-..- t'_ _:: 0

I I I I I I I I I

t% f',. ,--. ,-- C C C
O C C C C (Z (:D

I I I I
LL UJ U,J U_ L_ LL UJ
C L". C; C 0" _, (',.
O- r_ O c t-- c _
_.*",f'_ .,,1",,T ,.c c .,4"
_ .4 ("% C ,,1- U" c[
u..._ (:D ,.-_ t,-, ,,._ (k C-
O- ,,.-4 ('.., .,,1, ,,L, U it..
C'- ,-.o e[_ ¢r. C _', ,,.,-

1

"2
C
0

L)
v

in
C
0

o,,_

U
C
:3

0

.4-)

r,n

>:
i,-i

(1)

E-,

C
f,f'.,

.Z

II

o
(1"

II

t/"

c

i..-4

II
b"

OOOO_OC_OOOOCOOOOOOOO

IIIIIIIIIIIIIII

_C_ _ _ _C_ _ C_ _ O_ _

Illlll till

- 106 -

SID 65- 1730



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

"Z"
C
0
0
v

0
o_

0

H

¢)

O
0c
cc

I!

C
l-_ ¸,

I!

OOOOOOOOOOOOOOOOOOOOO

IIIIIIIIIIIIIII

_: _ m ¢, _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

IIIII IIIII

IIIllIllllIllll
_ _' _; _ _ _; _ _ _ _ _ _ _ _ _. _l _ U.' _ _

_ _ C, _ _ _ _ _ _ _,_ _ _, _ _. _ _ O _ _
_..._ ...... ..... .....
IIIIII IIII

II

X

C ¸

I",'%
i,--,

II

V':

>(

- 107 -

SID 65- 1730



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

0

0
v

C0

0
.,-4
4-)
u

¢)

4.a

CO

O
P-I

C
oD
oE:

I

x

O

.,c

II
tt,
x

C
oc
e¢,

II

c

II

O000O OOOO00COO0

IIIIIIIIIIII

_ _ _ __0 _ _

_, _ _ P_ _ _ _ _ _ _ _ _ _ _

IIIIit IIII

OOCO_ CO OC C 0_00
IIIIIIIIIIII

U _ L. _. U., _' _. _ _ _. _ _. _J _ _ _'

_ C _ _. _ _ _ C _ _ _C _ _

IIIII IIII

_000
O0000C

III

_O_

CO00CC
III

_ _,_ _

_.__

j2 21 

OCO00_
III

_O_C_

d2 22 
I

OCC_C_
III

22 ZZ :
I

- 108-

SID 65- 1730



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

C"

0

v

0"]

0
.i-4

U

U_

I-4

,--,4

O
0{:"
oc

.i

x_

i

C
fc

II

x

cc
or,

II

X

CCC_
COCOC

II

_00

_.__

IIIII

&gg!
O OO

, III

;22_g
IIIII

CO
I I

I.L_ t._
(9" h.
U'_h
-t',,1"
',C ¢¢"
.,£'. i.r

,,D c,J

-g
I I

,..4r_j
0

h. f_4
{_¢¢,

,_uP

22
I !

CO00
Jill

_._

_._

_2Z

IIIII

_._._._

_,_

2gg_
IIII

{'_IN

O0
I I

ILLL.
_O
ur, 0_
Or.,,--.

O" O"
¢_F':

O0
I I

I._ I.U

C,C

U',,¢
,,1"0
0"¢

_d

rn_
O0

I I

er,_$',

14"

_C

I t

OCOCOO00
lllll

ggZ_2Z_

I

O0:O000C
I!11111

222g_Z2g

OCOCO000
IIIII

ff _ _ _" _. _ _ _

O_C__._

22d_jZ2_
II

C
r_

II
is"
)¢

00000
II

IIlll

000000
IIIIII

!

0
I

C
Cy,
r--

f_

,g
!

O0
I I
LULU

_m
t",-l_r,

01,¢_

_g
! I

_N_O00
0000000
IIII

_¢__

I

- 109 -

SID 65- 1730



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

c
0

v

0

U
C

_a

I-4

O

CE

II
_r
X

{J

4'

I!

X

O
(_,
t_

II
v',
x

o
#n

!t
v"
>(

I I I I : I I', I
I.LJ LL UJ LU t4.; I.L',I.L_ IJJ I.U LJJ I_
C.C,.-_ ,,t,,O _.,-_cE i_ e,,,.(,,j
C ,,,t _ co I_- wD'O,_ t_ t'_ tr ".
r_" C).,O 0", _r_ er, r'-- i,c', ..+ C,v _

_ _£._-- P- I_ (% p_ I_'_(_ C _"-,

I

0000000000

IIIIII

C COOOO000OO

IIIIIII

_ _, _ _ 0 _ _ _ _. _ _,

_ _J _ _ _ _ E _ _ _ _
I

- 110 -

SID 65- 1730



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

C

CY_'

II

t_

C C 0 r-,'(:_ C) C, C 0 rJ 0
I I l I I I

LL: I..IJ LL L,L: 'LU LL LIJ Ij..! IJ__LL U,J
u- ." .-_1".-0 o,J v t_ 0". C_ ,,C
_ o" tr I._ Lr _0r <-, _ ..1" _r':
t'_ .-. (,_ ,-,r_ 4., a:) _r,:.._ ,,o 0
Cb _ u" 0,.-, C I_ _, i,_ (,,,, fr':

I

0
U
v

r.0

0
.,4

u
1::=
:::1

m

N

U')

F
I--4

,.0
ld

[.-i

o
or.

II

C ¸

(x"

II
i.,r

O
r _,

II

0000000000
IIIIII

_ _,_o_ _ _
_ _0_ _ _
0_ __0 _

IIIIIIIIII

O0000CO000
IIIIII

_ _0_ _

_, _ _ _ _ _ _ _: _ _

;ZZZ; 222 
Iltltlllll

COC:OCOCOO0
IIIIII

_ _'__ _

_ _ _ _ _ _ _. _ _ _

;222 .:2Z;d
IIIIIIIIII

00000000000
lllllll

0__0__
_0_,__0_

gg2ZZggZZ_g
I

00000000000
Illllll

_ _ _ ¢' _ _ _ _. _ _ _

_ _ _ _ _ _ _,_ _ _ _

ggZZlgglZg£
I

- 111 -

SID 65- 1730



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

RESULTS OF INVESTIGATION

VORTEX INSTABILITY

The investigation of flow past a half-plane was made with the intent

of determining, if possible, some of the limitations that may be inherent

in approximating a continuous shear layer by a continuous arrangement of

discrete vortices. Schindel_ indicated that, based upon his results, a

discrete vortex approximation to a continuous shear layer could not satis-

factorily be made in analyzing shear layer motion. However, results of

this facet of the investigation show that a discrete vortex approximation

to a continuous shear layer may be accomplished without sacrificing any

characteristics essential to analysis of continuous shear layer motion.

True, unstable vortex motion can be encountered due to interaction with

its image vortex. Such instability was produced in this shear layer study,

using K/UoL o = i. 0, Uo_tF/L o = I0 and UoAtl/L o = 0.00l

where

A tF = feeding period

At I = integration period

In this case, the vortices were so far apart that they were essentially

isolated. Each vortex behaved in a manner largely uninfluenced by the

others. Expressed differently, the angular change of the vortex sheet

element represented by the discrete vortex was insufficient to remove the

velocity component normal to the half-plane. As a result, the velocity

vector of the approaching vortex always retained a component directed

towards the half-plane. A quantitative criterion could no doubt be derived

on a rigorous basis. For the purpose of this study, it was sufficient to

recognize the nature of this instability, and to avoid it by using vortex

feeding periods sufficiently small to preclude its occurrence. In the

analysis of flow about a cylinder and a flat plate, it was found that a non-

dimensional feeding period of UotF/a = 0.5 appeared to be a reasonable

compromise between solution accuracy and extent of real time solution.

A second objective, equally important, was to determine the inaccura-

cies arising from employment of numerical techniques in integrating the

*Personal communication..
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motion of discrete vortices to determine their displacements. In this con-

nection it was found that a type of internal shear layer instability invariably

occurred after the solution had been carried beyond a certain point.

Generally, the onset of this internal instability occurred after one or two

whorls had formed. The point Of inception was usually in that part of the

shear layer connecting the straight portion to the convolution. This

instability may be noticed in Figures l through 5.

The peculiar fact about this internal instability is that it is not caused

by the crudeness of numerical integration. On the contrary, the finer the

integration method and/or the discrete vortex representation of the vortex

sheet, the more rapidly the whorled configuration and this "instability appear.

The obvious conclusion is that a continued refinement of the discrete vortex

approximation would eventually lead to instantaneous occurrence of this

instability at the feeding point. Similarity of this effect to the natural

transition of a laminar physical shear layer to turbulence is evident.

Furthermore, this immediate transition to turbulence is precisely what

should occur for the infinite Reynolds number case.

If the postulation of nonviscous wake flow should be pursued to its

logical end, it appears reasonable to assume that the present technique,

based on potential theory, could reproduce the random type of shedding

characteristically associated with supercritical Reynolds number.

To explain how this type of instability might become applicable to

random vortex shedding, recourse is made to the explanation offered by

Roshko (Reference 2). In this explanation, the randomness of the shedding

at supercritical Reynolds number is caused by the shear layer transition

from laminar to turbulent flow at a point very close to the shear layer

separation. Due to minor pressure fluctuations and other possible effects,

the transition point can momentarily move forward of the separation point.

When this happens, the relatively increased energy of the fluid near the

surface causes the boundary layer to become reattached, thus creating

what is known as a "separation bubble." Because the motion of this

separation bubble is extremely sensitive to pressure fluctuations, the

separation point is forced to move erratically in a random manner. To

simulate this phenomenon analytically would require an investigation of

microscopic flow mechanics in the separation region. Qualitatively it would

require that the instabilfty referred to above be made to occur in a manner

similar to the separation mechanics described.

SYMMETRICAL FLOW

The most significant results obtained from simulation of Schwabe's

experiment for symmetrical flow about an impulsively started cylinder are

that
i
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(1) The vorticity transport rate during the transient period of

symmetrical flow development cannot be related to the base

pressure coefficient using the relationship _ 2 = 1 - _pw" Thus

it is mandatory, for symmetrical flow, to use an approach wherein

vorticity transport rate and feeding point location are implicitly

defined.

(2) Model II results for the drag coefficient (Figure 38) show maximum

C D to be in agreement with Schwabe's data. The drag build up

curve also correlates well. The extended solution shows a drop

to an average C D near 1.0 for time beyond 35 a/U o. At a

Reynolds number near 10,000 the drag coefficient for the

cylinder with splitter plate is given as 0.72, and that for the

cylinder alone as 1.15 (Reference 17).

The present solution does not include any counter vorticity and vorticity

cancellation effects. It is, therefore, somewhat surprising that this agree-

ment should be obtained. A more detailed study of the Models I and II

solutions, however, has led to the following explanation.

It was shown by the Model I investigation, Figure 22, that

the drag coefficient is highly sensitive to small changes in vorticit 7 trans-

port rate. If (_2 is too high, the vortices begin to move forward of the

cylinder. If too low, the symmetrical vortex arrangement completely

detaches, leaving no wake cavity at all.

Therefore, the formation of a symmetrical separated wake is primarily

governed by stability criteria that require the wake cavity to remain

attached, and at the same time restrain it from becoming too large. With

the Model II approach, these criteria govern the vorticity transport in

such a way that stability is maintained. For example, if the wake cavity

becomes too large, the feeding point (i. e. , minimum pressure point) moves

forward and the tangential velocity, hence vorticity transport rate, is

reduced. Conversely, if the cavity tends to separate, the feeding point

moves farther aft where the tangential velocity is greater, thus providing

an increase in vorticity transport rate. This interplay between drag coef-

ficient, vorticity transport rate and feeding point location is evident in

Figure 34.

Because of this stability criterion, the vorticity transport rate is

automatically reduced by an amount that should be the same as that produced

by vorticity cancellation. On this basis, then, an estimate of _ , the net

fraction of boundary layer vorticity which remains in the far wake, can be

made by comparing the average value of _ 2 in the steady state. From

Figure 34, G2 is takento be 0.65. The value of _2 from Reference 17 for

the cylinder with splitter plate is 1.45 and for cylinder alone, is 1.7.
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O. 65 O. 65
Corresponding values of _ are then_ = 0.45 and - 0.38 respectively.

I. 45 I. 45

These values are less than the 0.5 found by Fage and Johansen. Assuming

the splitter plate produces symmetrical flow, _ = 0.45 should be the more

accurate value of the two.

It was partly in an attempt to verify this hypothesis that an additional

solution was obtained for _ = O. 6. If the hypothesis were correct, the feed-

ing point should move farther aft in an attempt to make up for the decreased

vorticity transport. While this does happen to a certain extent, the vorticity

transport rate initially remains lower than the case for c = 1.0. As a result,

the buildup rate in drag coefficient is much slower than for E = 1.0

(Figure 37). The long time solution probably would result in much the same

drag coefficient, with possibly an improved pressure distribution. For the

short time solution, however, factors in addition to those discussed above

appear to require consideration.

PERIODIC VORTEX SHEDDING

Both the Model I and II solutions were successful in demonstrating a

Strouhal number of 0. _. Approximately one-hour computer runs with each

version produced basically similar time variations in lift and drag coefficient.

The main difference between the two solutions appears to be the significantly

higher magnitude of lift and drag resulting from the Model II solution. To a

certain extent, this may be explained by the fact that according to the

Helmholtz vortex theorems, particles of fluid, once entrained in a vortex,

remain with the vortex. As a result, fluid inertia forces created by the

side motion of the vortices result in dynamic effects not unlike the motion

of a spring mass system. The short movie that was made with the Model II

solution clearly illustrates this type of side-to-side oshillatory motion of

the vortices in the formation of the near wake. In the Model I solution, this

type of motion would be restrained by the stationary feeding point.

Perhaps the most encouraging result from this study of periodic vortex

shedding is the demonstration of the strength of the basic phenomenon of

periodicity of the shedding with a Strouhal number of 0. Z. In the Model I

program, an asymmetry of feeding point location of Z0 degrees together with

constant vorticity transport rate at the feeding points did not appear to

significantly affect the solution. The most noticeable discrepancy was the

fact that mixing of the vortices from both sides occurred on the lower side

but only beyond five diameters downstream.

In studying the effect of numerical integration time interval on the

flow development, it was noted that the coarser time interval appears to

produce a lead in phase over the flow development obtained by using a finer
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integration interval. Presumably, this should lead to some small increase

in Strouhal number for the solution with coarser integration interval.

However, the difference appears to be slight in view of the good correlation

with experimental data.

One other technique, not thoroughly explored in this study, exists for

achieving extended real-time solutions, while minimizing the consumption

of computer machine time. That is the process of lumping the incremental
g ivortices in a Karman vortex into a few vortices of much greater strength.

This process should be satisfactory if its application is limited to K_rm&n

vortices located some distance downstream. Experimentation would be

necessary to develop a systematic method of accomplishing a reduction in

the number of vortices by this method. Vortices close to the cylinder

should be lumped in this manner with caution, since some type of local

transient in the velocity potential is unavoidable. Close to the cylinder this

could result in appreciable alteration of lift and drag forces.

In contrast with symmetrical flow solutions, a stability condition does

not govern the vorticity transport rate for periodic vortex shedding flow.

Therefore, the vorticity transport reduction factor, c , has much more

significance for unsymmetrical flow. Vorticity reduction by the creation of

counter vorticity from reverse flow over the rearward portion of the cylinder

followed by a significant amount of vorticity cancellation is believed to be the

primary mechanism for reducing the net vorticity from the boundary layers

that is transported downstream. Three-dimensional characterist2cs of this

type of mixing are generally of first order importance and contribute to

further reduction of experimentally observed forces. The elemetary approach

taken in this study of simply reducing the vorticity transport rate by applying

the factor e at the feeding point appears to result in a satisfactory reduction

of lift and drag coefficients.

An e of around 0.7 results in force coefficients that seem to agree with

those for subcritical Reynolds numbers. A lower value of _ would result in

drag coefficient in agreement with C D = 0.7 measured by Roshko,

Reference 2, for transcritical Reynolds number. By this technique, the

peak lift coefficient would also be expected to decrease to around 0. 7 as

shown in Figure 29.

This technique of accounting for vorticity cancellation does not properly

account for local effect on pressure distributions as shown by the significant

reversed tangential velocities which still occur as shown by Figure 32. Use

of additional feeding points in these areas of high velocity is believed to be

the most desirable approach to account for vorticity cancellation. While

this represents some additional complication in computer programs, the

technique is believed to be practicable. Further investigation along this

line could not be accomplished within the limitations of this study.
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It is considered fortunate that results from the Model I and II programs

are basically similar, since in the chronological sequence of events, the

Model I approach reached operational status first.

Correlation studies made with results of the Model I solution in the

areas of cylinder pressure distribution and wake fluctuations are believed

to be applicable, for the most part, to results that would be obtained from the

Model II approach. Depending upon the magnitude of _ that would be used

with the Model II program, the cylinder pressure and wake characteristics

would be expected to become correspondingly smoother and more in agree-

ment with experimental data.

Certain discrepancies occurred in computed cylinder forces based on

the generalized Blasius theorem as compared with those obtained by numer-

ical integration of unsteady cylinder pressures. Basically this discrepancy

stemmed from the fact that it was not realized at the outset that a simple

vortex cannot by itself grow in strength without being attached to a feeding

vortex sheet. In this respect, the development of forces on a cylinder in a

field of moving and growing vortices presented by Sarpkaya in Reference 9

is believed to be incomplete. The development involving impulse from a

pair of vortices of opposite sign anfl connected by a vortex sheet in a manner

similar to that taken by Bryson in Reference I0 produces forces which check

with those obtained by numerical integration of unsteady cylinder pressures.

The pressure distributions exhibit a discontinuous behavior near the

region of vortex sheet attachment, due not only to the vortex sheet but also to

proximity of discrete vortices at and near the feeding points. However,

this is a local effect as attested to by the good agreement between pressure

integrated forces and those obtained by the Blasius theorem. Except for

these local effects, the distributions are relatively smooth. Even the

pressure and velocity profiles of wake sections taken directly through a
S /

Karman type vortex such as Figures 16 and 17 show a remarkably smooth

behavior.

Good correlation of wake velocities is evident above an x/d ratio of 6;

where x is the distance downstream and d is the cylinder diameter. Disagree-

ment of wake velocity curves for the region closer than six diameters behind

the cylinder is considered largely the result of insufficient vorticity cancella-

tion for the reverse flow involved. This reversal of flow imparted by the

shed vortices is felt to be±he basic mechanism for creating vorticity. The

condition is further aggravated by the tendency toward excessive vortex

growth which increases the effects of flow reversal.

The agreement of average wake centerline pressure in Figure 18,

shown in comparison with that of Roshko, Reference 17, (Reynolds no. =

14,500), is fair for x__ 5. The distinct departure from experimental data
d
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in the near wake is another indication that vorticity cancellation effects

are important. Near wake velocity characteristics shown in Figure 19

compared with those of Kov{sznay (Reference 18) for a Reynolds no. of 56

are only vaguely similar. The wake fluctuation data are sketchy at best,

since they are based upon only nine discrete time samplings. However,

the general similarity with Spitzer's data, Reynolds no. = 2.5 x 105, is

evident. The wider wake shown by these data is considered to be another

consequence of the fact that vorticity cancellation has not been accounted

for. Also, viscous diffusion effects would become more pronounced as the

vortices continued to develop.

The Strouhal number of 0.2, computed from these results, agrees

with that for subcritical Reynolds number range. According to Roshko,

Reference 2, the Strouhal number for transcritical Reynolds numbers is

0.27. This reduction is explained by the fact that the wake is narrower.

The underlying difference in the two types of flow, however, is in the fact

that at subcritica! Reynolds numbers, the boundary layer remains laminar

beyond the separation point, and at transcritical Reynolds numbers the

boundary layer undergoes transition to turbulence distinctly ahead of the

separation point.

Strangely enough, perhaps, a phenomenon similar to the transition of

a laminar shear layer to turbulence was observed in the investigation of

shear layer motion past a half plane, it was also observed in some of the

earlier studies with the cylinder, Figure 9(A), for example.

Now, if it is true that the near wake is essentially nonviscous, and

results of the study provide evidence that it is, the mechanism for shear

layer transition to turbulence should also be of a nonviscous nature, since

it is a near wake phenomenon. It is therefore hypothesized that the simulation

of transcritical Reynolds number flow utilizing potential theory requires

proper control of the shear layer instability encountered in this study. A

considerably finer discrete vortex representation would be required in areas

near the cylinder surface. The general objective in using a more detailed

vortex representation would be to induce shear layer instability while it is

still essentially following the cylinder contour.

In all of these comparisons with experimental data on two-dimensional

tests, it should be remembered that three-dimensional effects could have

been, and very often were, of first-order importance. It would be expected

that these three-dimensional effects would reduce force magnitudes associated

with periodic vortex shedding, and smooth out cylinder pressure distributions.
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